123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- # --------------------------------------------------------
- # SimMIM
- # Copyright (c) 2021 Microsoft
- # Licensed under The MIT License [see LICENSE for details]
- # Written by Ze Liu
- # Modified by Zhenda Xie
- # --------------------------------------------------------
- import os
- import time
- import argparse
- import datetime
- import numpy as np
- import torch
- import torch.backends.cudnn as cudnn
- import torch.distributed as dist
- import torch.cuda.amp as amp
- from timm.utils import AverageMeter
- from config import get_config
- from models import build_model
- from data import build_loader
- from lr_scheduler import build_scheduler
- from optimizer import build_optimizer
- from logger import create_logger
- from utils_simmim import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper
- # pytorch major version (1.x or 2.x)
- PYTORCH_MAJOR_VERSION = int(torch.__version__.split('.')[0])
- def parse_option():
- parser = argparse.ArgumentParser('SimMIM pre-training script', add_help=False)
- parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', )
- parser.add_argument(
- "--opts",
- help="Modify config options by adding 'KEY VALUE' pairs. ",
- default=None,
- nargs='+',
- )
- # easy config modification
- parser.add_argument('--batch-size', type=int, help="batch size for single GPU")
- parser.add_argument('--data-path', type=str, help='path to dataset')
- parser.add_argument('--resume', help='resume from checkpoint')
- parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
- parser.add_argument('--use-checkpoint', action='store_true',
- help="whether to use gradient checkpointing to save memory")
- parser.add_argument('--enable-amp', action='store_true')
- parser.add_argument('--disable-amp', action='store_false', dest='enable_amp')
- parser.set_defaults(enable_amp=True)
- parser.add_argument('--output', default='output', type=str, metavar='PATH',
- help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)')
- parser.add_argument('--tag', help='tag of experiment')
- # distributed training
- # for pytorch >= 2.0, use `os.environ['LOCAL_RANK']` instead
- # (see https://pytorch.org/docs/stable/distributed.html#launch-utility)
- if PYTORCH_MAJOR_VERSION == 1:
- parser.add_argument("--local_rank", type=int, required=True, help='local rank for DistributedDataParallel')
- args = parser.parse_args()
- config = get_config(args)
- return args, config
- def main(config):
- data_loader_train = build_loader(config, simmim=True, is_pretrain=True)
- logger.info(f"Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}")
- model = build_model(config, is_pretrain=True)
- model.cuda()
- logger.info(str(model))
- optimizer = build_optimizer(config, model, simmim=True, is_pretrain=True)
- model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False)
- model_without_ddp = model.module
- n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
- logger.info(f"number of params: {n_parameters}")
- if hasattr(model_without_ddp, 'flops'):
- flops = model_without_ddp.flops()
- logger.info(f"number of GFLOPs: {flops / 1e9}")
- lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train))
- scaler = amp.GradScaler()
- if config.TRAIN.AUTO_RESUME:
- resume_file = auto_resume_helper(config.OUTPUT, logger)
- if resume_file:
- if config.MODEL.RESUME:
- logger.warning(f"auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}")
- config.defrost()
- config.MODEL.RESUME = resume_file
- config.freeze()
- logger.info(f'auto resuming from {resume_file}')
- else:
- logger.info(f'no checkpoint found in {config.OUTPUT}, ignoring auto resume')
- if config.MODEL.RESUME:
- load_checkpoint(config, model_without_ddp, optimizer, lr_scheduler, scaler, logger)
- logger.info("Start training")
- start_time = time.time()
- for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
- data_loader_train.sampler.set_epoch(epoch)
- train_one_epoch(config, model, data_loader_train, optimizer, epoch, lr_scheduler, scaler)
- if dist.get_rank() == 0 and (epoch % config.SAVE_FREQ == 0 or epoch == (config.TRAIN.EPOCHS - 1)):
- save_checkpoint(config, epoch, model_without_ddp, 0., optimizer, lr_scheduler, scaler, logger)
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- logger.info('Training time {}'.format(total_time_str))
- def train_one_epoch(config, model, data_loader, optimizer, epoch, lr_scheduler, scaler):
- model.train()
- optimizer.zero_grad()
- num_steps = len(data_loader)
- batch_time = AverageMeter()
- loss_meter = AverageMeter()
- norm_meter = AverageMeter()
- loss_scale_meter = AverageMeter()
- start = time.time()
- end = time.time()
- for idx, (img, mask, _) in enumerate(data_loader):
- img = img.cuda(non_blocking=True)
- mask = mask.cuda(non_blocking=True)
- with amp.autocast(enabled=config.ENABLE_AMP):
- loss = model(img, mask)
- if config.TRAIN.ACCUMULATION_STEPS > 1:
- loss = loss / config.TRAIN.ACCUMULATION_STEPS
- scaler.scale(loss).backward()
- if config.TRAIN.CLIP_GRAD:
- scaler.unscale_(optimizer)
- grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.TRAIN.CLIP_GRAD)
- else:
- grad_norm = get_grad_norm(model.parameters())
- if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
- scaler.step(optimizer)
- optimizer.zero_grad()
- scaler.update()
- lr_scheduler.step_update(epoch * num_steps + idx)
- else:
- optimizer.zero_grad()
- scaler.scale(loss).backward()
- if config.TRAIN.CLIP_GRAD:
- scaler.unscale_(optimizer)
- grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.TRAIN.CLIP_GRAD)
- else:
- grad_norm = get_grad_norm(model.parameters())
- scaler.step(optimizer)
- scaler.update()
- lr_scheduler.step_update(epoch * num_steps + idx)
- torch.cuda.synchronize()
- loss_meter.update(loss.item(), img.size(0))
- norm_meter.update(grad_norm)
- loss_scale_meter.update(scaler.get_scale())
- batch_time.update(time.time() - end)
- end = time.time()
- if idx % config.PRINT_FREQ == 0:
- lr = optimizer.param_groups[0]['lr']
- memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
- etas = batch_time.avg * (num_steps - idx)
- logger.info(
- f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
- f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t'
- f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
- f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
- f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t'
- f'loss_scale {loss_scale_meter.val:.4f} ({loss_scale_meter.avg:.4f})\t'
- f'mem {memory_used:.0f}MB')
- epoch_time = time.time() - start
- logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}")
- if __name__ == '__main__':
- _, config = parse_option()
- if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
- rank = int(os.environ["RANK"])
- world_size = int(os.environ['WORLD_SIZE'])
- print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
- else:
- rank = -1
- world_size = -1
- torch.cuda.set_device(config.LOCAL_RANK)
- torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
- torch.distributed.barrier()
- seed = config.SEED + dist.get_rank()
- torch.manual_seed(seed)
- np.random.seed(seed)
- cudnn.benchmark = True
- # linear scale the learning rate according to total batch size, may not be optimal
- linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
- linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
- linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
- # gradient accumulation also need to scale the learning rate
- if config.TRAIN.ACCUMULATION_STEPS > 1:
- linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS
- linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS
- linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS
- config.defrost()
- config.TRAIN.BASE_LR = linear_scaled_lr
- config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
- config.TRAIN.MIN_LR = linear_scaled_min_lr
- config.freeze()
- os.makedirs(config.OUTPUT, exist_ok=True)
- logger = create_logger(output_dir=config.OUTPUT, dist_rank=dist.get_rank(), name=f"{config.MODEL.NAME}")
- if dist.get_rank() == 0:
- path = os.path.join(config.OUTPUT, "config.json")
- with open(path, "w") as f:
- f.write(config.dump())
- logger.info(f"Full config saved to {path}")
- # print config
- logger.info(config.dump())
- main(config)
|