zhengbochao 6c7f7663e1 Initial commit | 3 týždňov pred | |
---|---|---|
.. | ||
README.md | 3 týždňov pred | |
__init__.py | 3 týždňov pred | |
main_amp.py | 3 týždňov pred |
main_amp.py
is based on https://github.com/pytorch/examples/tree/master/imagenet.
It implements Automatic Mixed Precision (Amp) training of popular model architectures, such as ResNet, AlexNet, and VGG, on the ImageNet dataset. Command-line flags forwarded to amp.initialize
are used to easily manipulate and switch between various pure and mixed precision "optimization levels" or opt_level
s. For a detailed explanation of opt_level
s, see the updated API guide.
Three lines enable Amp:
# Added after model and optimizer construction
model, optimizer = amp.initialize(model, optimizer, flags...)
...
# loss.backward() changed to:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
With the new Amp API you never need to explicitly convert your model, or the input data, to half().
To train a model, create softlinks to the Imagenet dataset, then run main.py
with the desired model architecture, as shown in Example commands
below.
The default learning rate schedule is set for ResNet50. main_amp.py
script rescales the learning rate according to the global batch size (number of distributed processes * per-process minibatch size).
Note: batch size --b 224
assumes your GPUs have >=16GB of onboard memory. You may be able to increase this to 256, but that's cutting it close, so it may out-of-memory for different Pytorch versions.
Note: All of the following use 4 dataloader subprocesses (--workers 4
) to reduce potential
CPU data loading bottlenecks.
Note: --opt-level
O1
and O2
both use dynamic loss scaling by default unless manually overridden.
--opt-level
O0
and O3
(the "pure" training modes) do not use loss scaling by default.
O0
and O3
can be told to use loss scaling via manual overrides, but using loss scaling with O0
(pure FP32 training) does not really make sense, and will trigger a warning.
Softlink training and validation datasets into the current directory:
$ ln -sf /data/imagenet/train-jpeg/ train
$ ln -sf /data/imagenet/val-jpeg/ val
Amp allows easy experimentation with various pure and mixed precision options.
$ python main_amp.py -a resnet50 --b 128 --workers 4 --opt-level O0 ./
$ python main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O3 ./
$ python main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O3 --keep-batchnorm-fp32 True ./
$ python main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O1 ./
$ python main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O1 --loss-scale 128.0 ./
$ python -m torch.distributed.launch --nproc_per_node=2 main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O1 ./
$ python main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O2 ./
$ python main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O2 --loss-scale 128.0 ./
$ python -m torch.distributed.launch --nproc_per_node=2 main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O2 ./
Options are explained below. Again, the updated API guide provides more detail.
--opt-level O0
(FP32 training) and O3
(FP16 training)"Pure FP32" training:
$ python main_amp.py -a resnet50 --b 128 --workers 4 --opt-level O0 ./
"Pure FP16" training:
$ python main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O3 ./
FP16 training with FP32 batchnorm:
$ python main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O3 --keep-batchnorm-fp32 True ./
Keeping the batchnorms in FP32 improves stability and allows Pytorch to use cudnn batchnorms, which significantly increases speed in Resnet50.
The O3
options might not converge, because they are not true mixed precision.
However, they can be useful to establish "speed of light" performance for
your model, which provides a baseline for comparison with O1
and O2
.
For Resnet50 in particular, --opt-level O3 --keep-batchnorm-fp32 True
establishes
the "speed of light." (Without --keep-batchnorm-fp32
, it's slower, because it does
not use cudnn batchnorm.)
--opt-level O1
(Official Mixed Precision recipe, recommended for typical use)O1
patches Torch functions to cast inputs according to a whitelist-blacklist model.
FP16-friendly (Tensor Core) ops like gemms and convolutions run in FP16, while ops
that benefit from FP32, like batchnorm and softmax, run in FP32.
Also, dynamic loss scaling is used by default.
$ python main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O1 ./
O1
overridden to use static loss scaling:
$ python main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O1 --loss-scale 128.0
Distributed training with 2 processes (1 GPU per process, see Distributed training below for more detail)
$ python -m torch.distributed.launch --nproc_per_node=2 main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O1 ./
For best performance, set --nproc_per_node
equal to the total number of GPUs on the node
to use all available resources.
--opt-level O2
("Almost FP16" mixed precision. More dangerous than O1.)O2
exists mainly to support some internal use cases. Please prefer O1
.
O2
casts the model to FP16, keeps batchnorms in FP32,
maintains master weights in FP32, and implements
dynamic loss scaling by default. (Unlike --opt-level O1, --opt-level O2
does not patch Torch functions.)
$ python main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O2 ./
"Fast mixed precision" overridden to use static loss scaling:
$ python main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O2 --loss-scale 128.0 ./
Distributed training with 2 processes (1 GPU per process)
$ python -m torch.distributed.launch --nproc_per_node=2 main_amp.py -a resnet50 --b 224 --workers 4 --opt-level O2 ./
main_amp.py
optionally uses apex.parallel.DistributedDataParallel
(DDP) for multiprocess training with one GPU per process.
model = apex.parallel.DistributedDataParallel(model)
is a drop-in replacement for
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[arg.local_rank],
output_device=arg.local_rank)
(because Torch DDP permits multiple GPUs per process, with Torch DDP you are required to manually specify the device to run on and the output device. With Apex DDP, it uses only the current device by default).
The choice of DDP wrapper (Torch or Apex) is orthogonal to the use of Amp and other Apex tools. It is safe to use apex.amp
with either torch.nn.parallel.DistributedDataParallel
or apex.parallel.DistributedDataParallel
. In the future, I may add some features that permit optional tighter integration between Amp
and apex.parallel.DistributedDataParallel
for marginal performance benefits, but currently, there's no compelling reason to use Apex DDP versus Torch DDP for most models.
To use DDP with apex.amp
, the only gotcha is that
model, optimizer = amp.initialize(model, optimizer, flags...)
must precede
model = DDP(model)
If DDP wrapping occurs before amp.initialize
, amp.initialize
will raise an error.
With both Apex DDP and Torch DDP, you must also call torch.cuda.set_device(args.local_rank)
within
each process prior to initializing your model or any other tensors.
More information can be found in the docs for the
Pytorch multiprocess launcher module torch.distributed.launch.
main_amp.py
is written to interact with
torch.distributed.launch,
which spawns multiprocess jobs using the following syntax:
python -m torch.distributed.launch --nproc_per_node=NUM_GPUS main_amp.py args...
NUM_GPUS
should be less than or equal to the number of visible GPU devices on the node. The use of torch.distributed.launch
is unrelated to the choice of DDP wrapper. It is safe to use either apex DDP or torch DDP with torch.distributed.launch
.
Optionally, one can run imagenet with synchronized batch normalization across processes by adding
--sync_bn
to the args...
Running with the --deterministic
flag should produce bitwise identical outputs run-to-run,
regardless of what other options are used (see Pytorch docs on reproducibility).
Since --deterministic
disables torch.backends.cudnn.benchmark
, --deterministic
may
cause a modest performance decrease.
If you're curious how the network actually looks on the CPU and GPU timelines (for example, how good is the overall utilization?
Is the prefetcher really overlapping data transfers?) try profiling main_amp.py
.
Detailed instructions can be found here.