1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- .. role:: hidden
- :class: hidden-section
- apex.fp16_utils
- ===================================
- This submodule contains utilities designed to streamline the mixed precision training recipe
- presented by NVIDIA `on Parallel Forall`_ and in GTC 2018 Sessions
- `Training Neural Networks with Mixed Precision: Theory and Practice`_ and
- `Training Neural Networks with Mixed Precision: Real Examples`_.
- For Pytorch users, Real Examples in particular is recommended.
- Full runnable Python scripts demonstrating ``apex.fp16_utils``
- can be found on the Github page:
- | `Simple FP16_Optimizer demos`_
- |
- | `Distributed Mixed Precision Training with imagenet`_
- |
- | `Mixed Precision Training with word_language_model`_
- |
- |
- .. _`on Parallel Forall`:
- https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
- .. _`Training Neural Networks with Mixed Precision: Theory and Practice`:
- http://on-demand.gputechconf.com/gtc/2018/video/S8923/
- .. _`Training Neural Networks with Mixed Precision: Real Examples`:
- http://on-demand.gputechconf.com/gtc/2018/video/S81012/
- .. _`Simple FP16_Optimizer demos`:
- https://github.com/NVIDIA/apex/tree/master/examples/FP16_Optimizer_simple
- .. _`Distributed Mixed Precision Training with imagenet`:
- https://github.com/NVIDIA/apex/tree/master/examples/imagenet
- .. _`Mixed Precision Training with word_language_model`:
- https://github.com/NVIDIA/apex/tree/master/examples/word_language_model
- .. automodule:: apex.fp16_utils
- .. currentmodule:: apex.fp16_utils
- Automatic management of master params + loss scaling
- ----------------------------------------------------
- .. autoclass:: FP16_Optimizer
- :members:
- .. autoclass:: LossScaler
- :members:
- .. autoclass:: DynamicLossScaler
- :members:
- Manual master parameter management
- ----------------------------------
- .. autofunction:: prep_param_lists
- .. autofunction:: master_params_to_model_params
- .. autofunction:: model_grads_to_master_grads
|