123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614 |
- # --------------------------------------------------------
- # Swin Transformer
- # Copyright (c) 2021 Microsoft
- # Licensed under The MIT License [see LICENSE for details]
- # Written by Ze Liu
- # --------------------------------------------------------
- import torch
- import torch.nn as nn
- import torch.utils.checkpoint as checkpoint
- from timm.models.layers import DropPath, to_2tuple, trunc_normal_
- try:
- import os, sys
- kernel_path = os.path.abspath(os.path.join('..'))
- sys.path.append(kernel_path)
- from kernels.window_process.window_process import WindowProcess, WindowProcessReverse
- except:
- WindowProcess = None
- WindowProcessReverse = None
- print("[Warning] Fused window process have not been installed. Please refer to get_started.md for installation.")
- class Mlp(nn.Module):
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop = nn.Dropout(drop)
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop(x)
- x = self.fc2(x)
- x = self.drop(x)
- return x
- def window_partition(x, window_size):
- """
- Args:
- x: (B, H, W, C)
- window_size (int): window size
- Returns:
- windows: (num_windows*B, window_size, window_size, C)
- """
- B, H, W, C = x.shape
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
- return windows
- def window_reverse(windows, window_size, H, W):
- """
- Args:
- windows: (num_windows*B, window_size, window_size, C)
- window_size (int): Window size
- H (int): Height of image
- W (int): Width of image
- Returns:
- x: (B, H, W, C)
- """
- B = int(windows.shape[0] / (H * W / window_size / window_size))
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
- return x
- class WindowAttention(nn.Module):
- r""" Window based multi-head self attention (W-MSA) module with relative position bias.
- It supports both of shifted and non-shifted window.
- Args:
- dim (int): Number of input channels.
- window_size (tuple[int]): The height and width of the window.
- num_heads (int): Number of attention heads.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
- """
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
- super().__init__()
- self.dim = dim
- self.window_size = window_size # Wh, Ww
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = qk_scale or head_dim ** -0.5
- # define a parameter table of relative position bias
- self.relative_position_bias_table = nn.Parameter(
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
- # get pair-wise relative position index for each token inside the window
- coords_h = torch.arange(self.window_size[0])
- coords_w = torch.arange(self.window_size[1])
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += self.window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
- self.register_buffer("relative_position_index", relative_position_index)
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- trunc_normal_(self.relative_position_bias_table, std=.02)
- self.softmax = nn.Softmax(dim=-1)
- def forward(self, x, mask=None):
- """
- Args:
- x: input features with shape of (num_windows*B, N, C)
- mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
- """
- B_, N, C = x.shape
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
- q = q * self.scale
- attn = (q @ k.transpose(-2, -1))
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
- attn = attn + relative_position_bias.unsqueeze(0)
- if mask is not None:
- nW = mask.shape[0]
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
- attn = attn.view(-1, self.num_heads, N, N)
- attn = self.softmax(attn)
- else:
- attn = self.softmax(attn)
- attn = self.attn_drop(attn)
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
- def extra_repr(self) -> str:
- return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
- def flops(self, N):
- # calculate flops for 1 window with token length of N
- flops = 0
- # qkv = self.qkv(x)
- flops += N * self.dim * 3 * self.dim
- # attn = (q @ k.transpose(-2, -1))
- flops += self.num_heads * N * (self.dim // self.num_heads) * N
- # x = (attn @ v)
- flops += self.num_heads * N * N * (self.dim // self.num_heads)
- # x = self.proj(x)
- flops += N * self.dim * self.dim
- return flops
- class SwinTransformerBlock(nn.Module):
- r""" Swin Transformer Block.
- Args:
- dim (int): Number of input channels.
- input_resolution (tuple[int]): Input resulotion.
- num_heads (int): Number of attention heads.
- window_size (int): Window size.
- shift_size (int): Shift size for SW-MSA.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
- drop (float, optional): Dropout rate. Default: 0.0
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False
- """
- def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
- act_layer=nn.GELU, norm_layer=nn.LayerNorm,
- fused_window_process=False):
- super().__init__()
- self.dim = dim
- self.input_resolution = input_resolution
- self.num_heads = num_heads
- self.window_size = window_size
- self.shift_size = shift_size
- self.mlp_ratio = mlp_ratio
- if min(self.input_resolution) <= self.window_size:
- # if window size is larger than input resolution, we don't partition windows
- self.shift_size = 0
- self.window_size = min(self.input_resolution)
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
- self.norm1 = norm_layer(dim)
- self.attn = WindowAttention(
- dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
- qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
- if self.shift_size > 0:
- # calculate attention mask for SW-MSA
- H, W = self.input_resolution
- img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
- h_slices = (slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None))
- w_slices = (slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None))
- cnt = 0
- for h in h_slices:
- for w in w_slices:
- img_mask[:, h, w, :] = cnt
- cnt += 1
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
- else:
- attn_mask = None
- self.register_buffer("attn_mask", attn_mask)
- self.fused_window_process = fused_window_process
- def forward(self, x):
- H, W = self.input_resolution
- B, L, C = x.shape
- assert L == H * W, "input feature has wrong size"
- shortcut = x
- x = self.norm1(x)
- x = x.view(B, H, W, C)
- # cyclic shift
- if self.shift_size > 0:
- if not self.fused_window_process:
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
- # partition windows
- x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
- else:
- x_windows = WindowProcess.apply(x, B, H, W, C, -self.shift_size, self.window_size)
- else:
- shifted_x = x
- # partition windows
- x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
- # W-MSA/SW-MSA
- attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
- # merge windows
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
- # reverse cyclic shift
- if self.shift_size > 0:
- if not self.fused_window_process:
- shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
- else:
- x = WindowProcessReverse.apply(attn_windows, B, H, W, C, self.shift_size, self.window_size)
- else:
- shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
- x = shifted_x
- x = x.view(B, H * W, C)
- x = shortcut + self.drop_path(x)
- # FFN
- x = x + self.drop_path(self.mlp(self.norm2(x)))
- return x
- def extra_repr(self) -> str:
- return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
- f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
- def flops(self):
- flops = 0
- H, W = self.input_resolution
- # norm1
- flops += self.dim * H * W
- # W-MSA/SW-MSA
- nW = H * W / self.window_size / self.window_size
- flops += nW * self.attn.flops(self.window_size * self.window_size)
- # mlp
- flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
- # norm2
- flops += self.dim * H * W
- return flops
- class PatchMerging(nn.Module):
- r""" Patch Merging Layer.
- Args:
- input_resolution (tuple[int]): Resolution of input feature.
- dim (int): Number of input channels.
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- """
- def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
- super().__init__()
- self.input_resolution = input_resolution
- self.dim = dim
- self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
- self.norm = norm_layer(4 * dim)
- def forward(self, x):
- """
- x: B, H*W, C
- """
- H, W = self.input_resolution
- B, L, C = x.shape
- assert L == H * W, "input feature has wrong size"
- assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
- x = x.view(B, H, W, C)
- x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
- x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
- x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
- x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
- x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
- x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
- x = self.norm(x)
- x = self.reduction(x)
- return x
- def extra_repr(self) -> str:
- return f"input_resolution={self.input_resolution}, dim={self.dim}"
- def flops(self):
- H, W = self.input_resolution
- flops = H * W * self.dim
- flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
- return flops
- class BasicLayer(nn.Module):
- """ A basic Swin Transformer layer for one stage.
- Args:
- dim (int): Number of input channels.
- input_resolution (tuple[int]): Input resolution.
- depth (int): Number of blocks.
- num_heads (int): Number of attention heads.
- window_size (int): Local window size.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
- drop (float, optional): Dropout rate. Default: 0.0
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
- fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False
- """
- def __init__(self, dim, input_resolution, depth, num_heads, window_size,
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
- drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
- fused_window_process=False):
- super().__init__()
- self.dim = dim
- self.input_resolution = input_resolution
- self.depth = depth
- self.use_checkpoint = use_checkpoint
- # build blocks
- self.blocks = nn.ModuleList([
- SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
- num_heads=num_heads, window_size=window_size,
- shift_size=0 if (i % 2 == 0) else window_size // 2,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias, qk_scale=qk_scale,
- drop=drop, attn_drop=attn_drop,
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
- norm_layer=norm_layer,
- fused_window_process=fused_window_process)
- for i in range(depth)])
- # patch merging layer
- if downsample is not None:
- self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
- else:
- self.downsample = None
- def forward(self, x):
- for blk in self.blocks:
- if self.use_checkpoint:
- x = checkpoint.checkpoint(blk, x)
- else:
- x = blk(x)
- if self.downsample is not None:
- x = self.downsample(x)
- return x
- def extra_repr(self) -> str:
- return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
- def flops(self):
- flops = 0
- for blk in self.blocks:
- flops += blk.flops()
- if self.downsample is not None:
- flops += self.downsample.flops()
- return flops
- class PatchEmbed(nn.Module):
- r""" Image to Patch Embedding
- Args:
- img_size (int): Image size. Default: 224.
- patch_size (int): Patch token size. Default: 4.
- in_chans (int): Number of input image channels. Default: 3.
- embed_dim (int): Number of linear projection output channels. Default: 96.
- norm_layer (nn.Module, optional): Normalization layer. Default: None
- """
- def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
- super().__init__()
- img_size = to_2tuple(img_size)
- patch_size = to_2tuple(patch_size)
- patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
- self.img_size = img_size
- self.patch_size = patch_size
- self.patches_resolution = patches_resolution
- self.num_patches = patches_resolution[0] * patches_resolution[1]
- self.in_chans = in_chans
- self.embed_dim = embed_dim
- self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
- if norm_layer is not None:
- self.norm = norm_layer(embed_dim)
- else:
- self.norm = None
- def forward(self, x):
- B, C, H, W = x.shape
- # FIXME look at relaxing size constraints
- assert H == self.img_size[0] and W == self.img_size[1], \
- f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
- x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
- if self.norm is not None:
- x = self.norm(x)
- return x
- def flops(self):
- Ho, Wo = self.patches_resolution
- flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
- if self.norm is not None:
- flops += Ho * Wo * self.embed_dim
- return flops
- class SwinTransformer(nn.Module):
- r""" Swin Transformer
- A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
- https://arxiv.org/pdf/2103.14030
- Args:
- img_size (int | tuple(int)): Input image size. Default 224
- patch_size (int | tuple(int)): Patch size. Default: 4
- in_chans (int): Number of input image channels. Default: 3
- num_classes (int): Number of classes for classification head. Default: 1000
- embed_dim (int): Patch embedding dimension. Default: 96
- depths (tuple(int)): Depth of each Swin Transformer layer.
- num_heads (tuple(int)): Number of attention heads in different layers.
- window_size (int): Window size. Default: 7
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
- qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
- drop_rate (float): Dropout rate. Default: 0
- attn_drop_rate (float): Attention dropout rate. Default: 0
- drop_path_rate (float): Stochastic depth rate. Default: 0.1
- norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
- ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
- patch_norm (bool): If True, add normalization after patch embedding. Default: True
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
- fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False
- """
- def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
- embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
- window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
- drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
- norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
- use_checkpoint=False, fused_window_process=False, **kwargs):
- super().__init__()
- self.num_classes = num_classes
- self.num_layers = len(depths)
- self.embed_dim = embed_dim
- self.ape = ape
- self.patch_norm = patch_norm
- self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
- self.mlp_ratio = mlp_ratio
- # split image into non-overlapping patches
- self.patch_embed = PatchEmbed(
- img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
- norm_layer=norm_layer if self.patch_norm else None)
- num_patches = self.patch_embed.num_patches
- patches_resolution = self.patch_embed.patches_resolution
- self.patches_resolution = patches_resolution
- # absolute position embedding
- if self.ape:
- self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
- trunc_normal_(self.absolute_pos_embed, std=.02)
- self.pos_drop = nn.Dropout(p=drop_rate)
- # stochastic depth
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
- # build layers
- self.layers = nn.ModuleList()
- for i_layer in range(self.num_layers):
- layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
- input_resolution=(patches_resolution[0] // (2 ** i_layer),
- patches_resolution[1] // (2 ** i_layer)),
- depth=depths[i_layer],
- num_heads=num_heads[i_layer],
- window_size=window_size,
- mlp_ratio=self.mlp_ratio,
- qkv_bias=qkv_bias, qk_scale=qk_scale,
- drop=drop_rate, attn_drop=attn_drop_rate,
- drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
- norm_layer=norm_layer,
- downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
- use_checkpoint=use_checkpoint,
- fused_window_process=fused_window_process)
- self.layers.append(layer)
- self.norm = norm_layer(self.num_features)
- self.avgpool = nn.AdaptiveAvgPool1d(1)
- self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
- self.apply(self._init_weights)
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- trunc_normal_(m.weight, std=.02)
- if isinstance(m, nn.Linear) and m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.LayerNorm):
- nn.init.constant_(m.bias, 0)
- nn.init.constant_(m.weight, 1.0)
- @torch.jit.ignore
- def no_weight_decay(self):
- return {'absolute_pos_embed'}
- @torch.jit.ignore
- def no_weight_decay_keywords(self):
- return {'relative_position_bias_table'}
- def forward_features(self, x):
- x = self.patch_embed(x)
- if self.ape:
- x = x + self.absolute_pos_embed
- x = self.pos_drop(x)
- for layer in self.layers:
- x = layer(x)
- x = self.norm(x) # B L C
- x = self.avgpool(x.transpose(1, 2)) # B C 1
- x = torch.flatten(x, 1)
- return x
- def forward(self, x):
- x = self.forward_features(x)
- x = self.head(x)
- return x
- def flops(self):
- flops = 0
- flops += self.patch_embed.flops()
- for i, layer in enumerate(self.layers):
- flops += layer.flops()
- flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
- flops += self.num_features * self.num_classes
- return flops
|