123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359 |
- # --------------------------------------------------------
- # Swin Transformer
- # Copyright (c) 2021 Microsoft
- # Licensed under The MIT License [see LICENSE for details]
- # Written by Ze Liu
- # --------------------------------------------------------'
- import os
- import torch
- import yaml
- from yacs.config import CfgNode as CN
- # pytorch major version (1.x or 2.x)
- PYTORCH_MAJOR_VERSION = int(torch.__version__.split('.')[0])
- _C = CN()
- # Base config files
- _C.BASE = ['']
- # -----------------------------------------------------------------------------
- # Data settings
- # -----------------------------------------------------------------------------
- _C.DATA = CN()
- # Batch size for a single GPU, could be overwritten by command line argument
- _C.DATA.BATCH_SIZE = 128
- # Path to dataset, could be overwritten by command line argument
- _C.DATA.DATA_PATH = '/data/fengyang/sunwin/code/swin_conda_env/Swin-Transformer/imagenet/'
- # Dataset name
- _C.DATA.DATASET = 'imagenet'
- # Input image size
- _C.DATA.IMG_SIZE = 224
- # Interpolation to resize image (random, bilinear, bicubic)
- _C.DATA.INTERPOLATION = 'bicubic'
- # Use zipped dataset instead of folder dataset
- # could be overwritten by command line argument
- _C.DATA.ZIP_MODE = False
- # Cache Data in Memory, could be overwritten by command line argument
- _C.DATA.CACHE_MODE = 'part'
- # Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.
- _C.DATA.PIN_MEMORY = True
- # Number of data loading threads
- _C.DATA.NUM_WORKERS = 8
- # [SimMIM] Mask patch size for MaskGenerator
- _C.DATA.MASK_PATCH_SIZE = 32
- # [SimMIM] Mask ratio for MaskGenerator
- _C.DATA.MASK_RATIO = 0.6
- # -----------------------------------------------------------------------------
- # Model settings
- # -----------------------------------------------------------------------------
- _C.MODEL = CN()
- # Model type
- _C.MODEL.TYPE = 'swin'
- # Model name
- _C.MODEL.NAME = 'swin_tiny_patch4_window7_224'
- # Pretrained weight from checkpoint, could be imagenet22k pretrained weight
- # could be overwritten by command line argument
- _C.MODEL.PRETRAINED = ''
- # Checkpoint to resume, could be overwritten by command line argument
- _C.MODEL.RESUME = '/data/fengyang/sunwin/code/swin_conda_env/Swin-Transformer/swin_tiny_patch4_window7_224.pth'
- # Number of classes, overwritten in data preparation
- _C.MODEL.NUM_CLASSES = 2
- # Dropout rate
- _C.MODEL.DROP_RATE = 0.0
- # Drop path rate
- _C.MODEL.DROP_PATH_RATE = 0.1
- # Label Smoothing
- _C.MODEL.LABEL_SMOOTHING = 0.1
- # Swin Transformer parameters
- _C.MODEL.SWIN = CN()
- _C.MODEL.SWIN.PATCH_SIZE = 4
- _C.MODEL.SWIN.IN_CHANS = 3
- _C.MODEL.SWIN.EMBED_DIM = 96
- _C.MODEL.SWIN.DEPTHS = [2, 2, 6, 2]
- _C.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24]
- _C.MODEL.SWIN.WINDOW_SIZE = 7
- _C.MODEL.SWIN.MLP_RATIO = 4.
- _C.MODEL.SWIN.QKV_BIAS = True
- _C.MODEL.SWIN.QK_SCALE = None
- _C.MODEL.SWIN.APE = False
- _C.MODEL.SWIN.PATCH_NORM = True
- # Swin Transformer V2 parameters
- _C.MODEL.SWINV2 = CN()
- _C.MODEL.SWINV2.PATCH_SIZE = 4
- _C.MODEL.SWINV2.IN_CHANS = 3
- _C.MODEL.SWINV2.EMBED_DIM = 96
- _C.MODEL.SWINV2.DEPTHS = [2, 2, 6, 2]
- _C.MODEL.SWINV2.NUM_HEADS = [3, 6, 12, 24]
- _C.MODEL.SWINV2.WINDOW_SIZE = 7
- _C.MODEL.SWINV2.MLP_RATIO = 4.
- _C.MODEL.SWINV2.QKV_BIAS = True
- _C.MODEL.SWINV2.APE = False
- _C.MODEL.SWINV2.PATCH_NORM = True
- _C.MODEL.SWINV2.PRETRAINED_WINDOW_SIZES = [0, 0, 0, 0]
- # Swin Transformer MoE parameters
- _C.MODEL.SWIN_MOE = CN()
- _C.MODEL.SWIN_MOE.PATCH_SIZE = 4
- _C.MODEL.SWIN_MOE.IN_CHANS = 3
- _C.MODEL.SWIN_MOE.EMBED_DIM = 96
- _C.MODEL.SWIN_MOE.DEPTHS = [2, 2, 6, 2]
- _C.MODEL.SWIN_MOE.NUM_HEADS = [3, 6, 12, 24]
- _C.MODEL.SWIN_MOE.WINDOW_SIZE = 7
- _C.MODEL.SWIN_MOE.MLP_RATIO = 4.
- _C.MODEL.SWIN_MOE.QKV_BIAS = True
- _C.MODEL.SWIN_MOE.QK_SCALE = None
- _C.MODEL.SWIN_MOE.APE = False
- _C.MODEL.SWIN_MOE.PATCH_NORM = True
- _C.MODEL.SWIN_MOE.MLP_FC2_BIAS = True
- _C.MODEL.SWIN_MOE.INIT_STD = 0.02
- _C.MODEL.SWIN_MOE.PRETRAINED_WINDOW_SIZES = [0, 0, 0, 0]
- _C.MODEL.SWIN_MOE.MOE_BLOCKS = [[-1], [-1], [-1], [-1]]
- _C.MODEL.SWIN_MOE.NUM_LOCAL_EXPERTS = 1
- _C.MODEL.SWIN_MOE.TOP_VALUE = 1
- _C.MODEL.SWIN_MOE.CAPACITY_FACTOR = 1.25
- _C.MODEL.SWIN_MOE.COSINE_ROUTER = False
- _C.MODEL.SWIN_MOE.NORMALIZE_GATE = False
- _C.MODEL.SWIN_MOE.USE_BPR = True
- _C.MODEL.SWIN_MOE.IS_GSHARD_LOSS = False
- _C.MODEL.SWIN_MOE.GATE_NOISE = 1.0
- _C.MODEL.SWIN_MOE.COSINE_ROUTER_DIM = 256
- _C.MODEL.SWIN_MOE.COSINE_ROUTER_INIT_T = 0.5
- _C.MODEL.SWIN_MOE.MOE_DROP = 0.0
- _C.MODEL.SWIN_MOE.AUX_LOSS_WEIGHT = 0.01
- # Swin MLP parameters
- _C.MODEL.SWIN_MLP = CN()
- _C.MODEL.SWIN_MLP.PATCH_SIZE = 4
- _C.MODEL.SWIN_MLP.IN_CHANS = 3
- _C.MODEL.SWIN_MLP.EMBED_DIM = 96
- _C.MODEL.SWIN_MLP.DEPTHS = [2, 2, 6, 2]
- _C.MODEL.SWIN_MLP.NUM_HEADS = [3, 6, 12, 24]
- _C.MODEL.SWIN_MLP.WINDOW_SIZE = 7
- _C.MODEL.SWIN_MLP.MLP_RATIO = 4.
- _C.MODEL.SWIN_MLP.APE = False
- _C.MODEL.SWIN_MLP.PATCH_NORM = True
- # [SimMIM] Norm target during training
- _C.MODEL.SIMMIM = CN()
- _C.MODEL.SIMMIM.NORM_TARGET = CN()
- _C.MODEL.SIMMIM.NORM_TARGET.ENABLE = False
- _C.MODEL.SIMMIM.NORM_TARGET.PATCH_SIZE = 47
- # -----------------------------------------------------------------------------
- # Training settings
- # -----------------------------------------------------------------------------
- _C.TRAIN = CN()
- _C.TRAIN.START_EPOCH = 0
- _C.TRAIN.EPOCHS = 300
- _C.TRAIN.WARMUP_EPOCHS = 20
- _C.TRAIN.WEIGHT_DECAY = 0.05
- _C.TRAIN.BASE_LR = 5e-4
- _C.TRAIN.WARMUP_LR = 5e-7
- _C.TRAIN.MIN_LR = 5e-6
- # Clip gradient norm
- _C.TRAIN.CLIP_GRAD = 5.0
- # Auto resume from latest checkpoint
- _C.TRAIN.AUTO_RESUME = True
- # Gradient accumulation steps
- # could be overwritten by command line argument
- _C.TRAIN.ACCUMULATION_STEPS = 1
- # Whether to use gradient checkpointing to save memory
- # could be overwritten by command line argument
- _C.TRAIN.USE_CHECKPOINT = False
- # LR scheduler
- _C.TRAIN.LR_SCHEDULER = CN()
- _C.TRAIN.LR_SCHEDULER.NAME = 'cosine'
- # Epoch interval to decay LR, used in StepLRScheduler
- _C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30
- # LR decay rate, used in StepLRScheduler
- _C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1
- # warmup_prefix used in CosineLRScheduler
- _C.TRAIN.LR_SCHEDULER.WARMUP_PREFIX = True
- # [SimMIM] Gamma / Multi steps value, used in MultiStepLRScheduler
- _C.TRAIN.LR_SCHEDULER.GAMMA = 0.1
- _C.TRAIN.LR_SCHEDULER.MULTISTEPS = []
- # Optimizer
- _C.TRAIN.OPTIMIZER = CN()
- _C.TRAIN.OPTIMIZER.NAME = 'adamw'
- # Optimizer Epsilon
- _C.TRAIN.OPTIMIZER.EPS = 1e-8
- # Optimizer Betas
- _C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999)
- # SGD momentum
- _C.TRAIN.OPTIMIZER.MOMENTUM = 0.9
- # [SimMIM] Layer decay for fine-tuning
- _C.TRAIN.LAYER_DECAY = 1.0
- # MoE
- _C.TRAIN.MOE = CN()
- # Only save model on master device
- _C.TRAIN.MOE.SAVE_MASTER = False
- # -----------------------------------------------------------------------------
- # Augmentation settings
- # -----------------------------------------------------------------------------
- _C.AUG = CN()
- # Color jitter factor
- _C.AUG.COLOR_JITTER = 0.4
- # Use AutoAugment policy. "v0" or "original"
- _C.AUG.AUTO_AUGMENT = 'rand-m9-mstd0.5-inc1'
- # Random erase prob
- _C.AUG.REPROB = 0.25
- # Random erase mode
- _C.AUG.REMODE = 'pixel'
- # Random erase count
- _C.AUG.RECOUNT = 1
- # Mixup alpha, mixup enabled if > 0
- _C.AUG.MIXUP = 0.8
- # Cutmix alpha, cutmix enabled if > 0
- _C.AUG.CUTMIX = 1.0
- # Cutmix min/max ratio, overrides alpha and enables cutmix if set
- _C.AUG.CUTMIX_MINMAX = None
- # Probability of performing mixup or cutmix when either/both is enabled
- _C.AUG.MIXUP_PROB = 1.0
- # Probability of switching to cutmix when both mixup and cutmix enabled
- _C.AUG.MIXUP_SWITCH_PROB = 0.5
- # How to apply mixup/cutmix params. Per "batch", "pair", or "elem"
- _C.AUG.MIXUP_MODE = 'batch'
- # -----------------------------------------------------------------------------
- # Testing settings
- # -----------------------------------------------------------------------------
- _C.TEST = CN()
- # Whether to use center crop when testing
- _C.TEST.CROP = True
- # Whether to use SequentialSampler as validation sampler
- _C.TEST.SEQUENTIAL = False
- _C.TEST.SHUFFLE = False
- # -----------------------------------------------------------------------------
- # Misc
- # -----------------------------------------------------------------------------
- # [SimMIM] Whether to enable pytorch amp, overwritten by command line argument
- _C.ENABLE_AMP = False
- # Enable Pytorch automatic mixed precision (amp).
- _C.AMP_ENABLE = True
- # [Deprecated] Mixed precision opt level of apex, if O0, no apex amp is used ('O0', 'O1', 'O2')
- _C.AMP_OPT_LEVEL = ''
- # Path to output folder, overwritten by command line argument
- _C.OUTPUT = ''
- # Tag of experiment, overwritten by command line argument
- _C.TAG = 'default'
- # Frequency to save checkpoint
- _C.SAVE_FREQ = 1
- # Frequency to logging info
- _C.PRINT_FREQ = 10
- # Fixed random seed
- _C.SEED = 0
- # Perform evaluation only, overwritten by command line argument
- _C.EVAL_MODE = False
- # Test throughput only, overwritten by command line argument
- _C.THROUGHPUT_MODE = False
- # local rank for DistributedDataParallel, given by command line argument
- _C.LOCAL_RANK = 0
- # for acceleration
- _C.FUSED_WINDOW_PROCESS = False
- _C.FUSED_LAYERNORM = False
- def _update_config_from_file(config, cfg_file):
- config.defrost()
- with open(cfg_file, 'r') as f:
- yaml_cfg = yaml.load(f, Loader=yaml.FullLoader)
- for cfg in yaml_cfg.setdefault('BASE', ['']):
- if cfg:
- _update_config_from_file(
- config, os.path.join(os.path.dirname(cfg_file), cfg)
- )
- print('=> merge config from {}'.format(cfg_file))
- config.merge_from_file(cfg_file)
- config.freeze()
- def update_config(config, args):
- _update_config_from_file(config, args.cfg)
- config.defrost()
- if args.opts:
- config.merge_from_list(args.opts)
- def _check_args(name):
- if hasattr(args, name) and eval(f'args.{name}'):
- return True
- return False
- # merge from specific arguments
- if _check_args('batch_size'):
- config.DATA.BATCH_SIZE = args.batch_size
- if _check_args('data_path'):
- config.DATA.DATA_PATH = args.data_path
- if _check_args('zip'):
- config.DATA.ZIP_MODE = True
- if _check_args('cache_mode'):
- config.DATA.CACHE_MODE = args.cache_mode
- if _check_args('pretrained'):
- config.MODEL.PRETRAINED = args.pretrained
- if _check_args('resume'):
- config.MODEL.RESUME = args.resume
- if _check_args('accumulation_steps'):
- config.TRAIN.ACCUMULATION_STEPS = args.accumulation_steps
- if _check_args('use_checkpoint'):
- config.TRAIN.USE_CHECKPOINT = True
- if _check_args('amp_opt_level'):
- print("[warning] Apex amp has been deprecated, please use pytorch amp instead!")
- if args.amp_opt_level == 'O0':
- config.AMP_ENABLE = False
- if _check_args('disable_amp'):
- config.AMP_ENABLE = False
- if _check_args('output'):
- config.OUTPUT = args.output
- if _check_args('tag'):
- config.TAG = args.tag
- if _check_args('eval'):
- config.EVAL_MODE = True
- if _check_args('throughput'):
- config.THROUGHPUT_MODE = True
- # [SimMIM]
- if _check_args('enable_amp'):
- config.ENABLE_AMP = args.enable_amp
- # for acceleration
- if _check_args('fused_window_process'):
- config.FUSED_WINDOW_PROCESS = True
- if _check_args('fused_layernorm'):
- config.FUSED_LAYERNORM = True
- ## Overwrite optimizer if not None, currently we use it for [fused_adam, fused_lamb]
- if _check_args('optim'):
- config.TRAIN.OPTIMIZER.NAME = args.optim
- # set local rank for distributed training
- if PYTORCH_MAJOR_VERSION == 1:
- config.LOCAL_RANK = args.local_rank
- else:
- config.LOCAL_RANK = int(os.environ['LOCAL_RANK'])
- # output folder
- config.OUTPUT = os.path.join(config.OUTPUT, config.MODEL.NAME, config.TAG)
- config.freeze()
- def get_config(args):
- """Get a yacs CfgNode object with default values."""
- # Return a clone so that the defaults will not be altered
- # This is for the "local variable" use pattern
- config = _C.clone()
- update_config(config, args)
- return config
|