import torch model_params_rank0 = torch.load("rank0model.pth", map_location = lambda storage, loc: storage.cuda(0)) model_params_rank1 = torch.load("rank1model.pth", map_location = lambda storage, loc: storage.cuda(0)) master_params_rank0 = torch.load("rank0master.pth", map_location = lambda storage, loc: storage.cuda(0)) master_params_rank1 = torch.load("rank1master.pth", map_location = lambda storage, loc: storage.cuda(0)) for model_rank0, model_rank1, master_rank0, master_rank1 in zip( model_params_rank0, model_params_rank1, master_params_rank0, master_params_rank1): assert torch.allclose(model_rank0, model_rank1), "Model param mismatch" assert torch.allclose(master_rank0, master_rank1), "Master param mismatch" # Some debugging/investigation assistance code: # maxval, maxind = torch.max(((torch.abs(model_rank0).float())/torch.abs(master_rank0)).view(-1), 0) # offending_val_half = model_rank0.view(-1)[maxind.item()] # offending_val_float = master_rank0.view(-1)[maxind.item()] # print(maxval.item(), maxind.item(), offending_val_half.item(), offending_val_float.item(), # offending_val_float.half().item()) # rtol needs to be > 2^-11 because of denormals... assert torch.allclose(model_rank0, master_rank0.half(), rtol=.005), "Model-master mismatch" print("OK: Model and master params match across ranks.")