# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- import os import torch import numpy as np import torch.distributed as dist from torchvision import datasets, transforms from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import Mixup from timm.data import create_transform from .cached_image_folder import CachedImageFolder from .imagenet22k_dataset import IN22KDATASET from .samplers import SubsetRandomSampler try: from torchvision.transforms import InterpolationMode def _pil_interp(method): if method == 'bicubic': return InterpolationMode.BICUBIC elif method == 'lanczos': return InterpolationMode.LANCZOS elif method == 'hamming': return InterpolationMode.HAMMING else: # default bilinear, do we want to allow nearest? return InterpolationMode.BILINEAR import timm.data.transforms as timm_transforms timm_transforms._pil_interp = _pil_interp except: from timm.data.transforms import _pil_interp def build_loader(config): config.defrost() dataset_train, config.MODEL.NUM_CLASSES = build_dataset(is_train=True, config=config) config.freeze() print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build train dataset") dataset_val, _ = build_dataset(is_train=False, config=config) print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build val dataset") num_tasks = dist.get_world_size() global_rank = dist.get_rank() if config.DATA.ZIP_MODE and config.DATA.CACHE_MODE == 'part': indices = np.arange(dist.get_rank(), len(dataset_train), dist.get_world_size()) sampler_train = SubsetRandomSampler(indices) else: sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) if config.TEST.SEQUENTIAL: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_val = torch.utils.data.distributed.DistributedSampler( dataset_val, shuffle=config.TEST.SHUFFLE ) data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=config.DATA.BATCH_SIZE, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=True, ) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=config.DATA.BATCH_SIZE, shuffle=False, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=False ) # setup mixup / cutmix mixup_fn = None mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None if mixup_active: mixup_fn = Mixup( mixup_alpha=config.AUG.MIXUP, cutmix_alpha=config.AUG.CUTMIX, cutmix_minmax=config.AUG.CUTMIX_MINMAX, prob=config.AUG.MIXUP_PROB, switch_prob=config.AUG.MIXUP_SWITCH_PROB, mode=config.AUG.MIXUP_MODE, label_smoothing=config.MODEL.LABEL_SMOOTHING, num_classes=config.MODEL.NUM_CLASSES) return dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn def build_dataset(is_train, config): transform = build_transform(is_train, config) if config.DATA.DATASET == 'imagenet': # prefix = 'train' if is_train else 'val' prefix = 'train' if is_train else 'test' if config.DATA.ZIP_MODE: ann_file = prefix + "_map.txt" prefix = prefix + ".zip@/" dataset = CachedImageFolder(config.DATA.DATA_PATH, ann_file, prefix, transform, cache_mode=config.DATA.CACHE_MODE if is_train else 'part') else: root = os.path.join(config.DATA.DATA_PATH, prefix) dataset = datasets.ImageFolder(root, transform=transform) # nb_classes = 1000 nb_classes = 2 elif config.DATA.DATASET == 'imagenet22K': prefix = 'ILSVRC2011fall_whole' if is_train: ann_file = prefix + "_map_train.txt" else: ann_file = prefix + "_map_val.txt" dataset = IN22KDATASET(config.DATA.DATA_PATH, ann_file, transform) nb_classes = 21841 else: raise NotImplementedError("We only support ImageNet Now.") return dataset, nb_classes def build_transform(is_train, config): resize_im = config.DATA.IMG_SIZE > 32 if is_train: # this should always dispatch to transforms_imagenet_train transform = create_transform( input_size=config.DATA.IMG_SIZE, is_training=True, color_jitter=config.AUG.COLOR_JITTER if config.AUG.COLOR_JITTER > 0 else None, auto_augment=config.AUG.AUTO_AUGMENT if config.AUG.AUTO_AUGMENT != 'none' else None, re_prob=config.AUG.REPROB, re_mode=config.AUG.REMODE, re_count=config.AUG.RECOUNT, interpolation=config.DATA.INTERPOLATION, ) if not resize_im: # replace RandomResizedCropAndInterpolation with # RandomCrop transform.transforms[0] = transforms.RandomCrop(config.DATA.IMG_SIZE, padding=4) return transform t = [] if resize_im: if config.TEST.CROP: size = int((256 / 224) * config.DATA.IMG_SIZE) t.append( transforms.Resize(size, interpolation=_pil_interp(config.DATA.INTERPOLATION)), # to maintain same ratio w.r.t. 224 images ) t.append(transforms.CenterCrop(config.DATA.IMG_SIZE)) else: t.append( transforms.Resize((config.DATA.IMG_SIZE, config.DATA.IMG_SIZE), interpolation=_pil_interp(config.DATA.INTERPOLATION)) ) t.append(transforms.ToTensor()) t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)) return transforms.Compose(t)