# Swin Transformer for Image Classification This folder contains the implementation of the Swin Transformer for image classification. ## Model Zoo Please refer to [MODEL HUB](MODELHUB.md#imagenet-22k-pretrained-swin-moe-models) for more pre-trained models. ## Usage ### Install We recommend using the pytorch docker `nvcr>=21.05` by nvidia: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch. - Clone this repo: ```bash git clone https://github.com/microsoft/Swin-Transformer.git cd Swin-Transformer ``` - Create a conda virtual environment and activate it: ```bash conda create -n swin python=3.7 -y conda activate swin ``` - Install `CUDA>=10.2` with `cudnn>=7` following the [official installation instructions](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html) - Install `PyTorch>=1.8.0` and `torchvision>=0.9.0` with `CUDA>=10.2`: ```bash conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch ``` - Install `timm==0.4.12`: ```bash pip install timm==0.4.12 ``` - Install other requirements: ```bash pip install opencv-python==4.4.0.46 termcolor==1.1.0 yacs==0.1.8 pyyaml scipy ``` - Install fused window process for acceleration, activated by passing `--fused_window_process` in the running script ```bash cd kernels/window_process python setup.py install #--user ``` ### Data preparation We use standard ImageNet dataset, you can download it from http://image-net.org/. We provide the following two ways to load data: - For standard folder dataset, move validation images to labeled sub-folders. The file structure should look like: ```bash $ tree data imagenet ├── train │ ├── class1 │ │ ├── img1.jpeg │ │ ├── img2.jpeg │ │ └── ... │ ├── class2 │ │ ├── img3.jpeg │ │ └── ... │ └── ... └── val ├── class1 │ ├── img4.jpeg │ ├── img5.jpeg │ └── ... ├── class2 │ ├── img6.jpeg │ └── ... └── ... ``` - To boost the slow speed when reading images from massive small files, we also support zipped ImageNet, which includes four files: - `train.zip`, `val.zip`: which store the zipped folder for train and validate splits. - `train_map.txt`, `val_map.txt`: which store the relative path in the corresponding zip file and ground truth label. Make sure the data folder looks like this: ```bash $ tree data data └── ImageNet-Zip ├── train_map.txt ├── train.zip ├── val_map.txt └── val.zip $ head -n 5 data/ImageNet-Zip/val_map.txt ILSVRC2012_val_00000001.JPEG 65 ILSVRC2012_val_00000002.JPEG 970 ILSVRC2012_val_00000003.JPEG 230 ILSVRC2012_val_00000004.JPEG 809 ILSVRC2012_val_00000005.JPEG 516 $ head -n 5 data/ImageNet-Zip/train_map.txt n01440764/n01440764_10026.JPEG 0 n01440764/n01440764_10027.JPEG 0 n01440764/n01440764_10029.JPEG 0 n01440764/n01440764_10040.JPEG 0 n01440764/n01440764_10042.JPEG 0 ``` - For ImageNet-22K dataset, make a folder named `fall11_whole` and move all images to labeled sub-folders in this folder. Then download the train-val split file ([ILSVRC2011fall_whole_map_train.txt](https://github.com/SwinTransformer/storage/releases/download/v2.0.1/ILSVRC2011fall_whole_map_train.txt) & [ILSVRC2011fall_whole_map_val.txt](https://github.com/SwinTransformer/storage/releases/download/v2.0.1/ILSVRC2011fall_whole_map_val.txt)) , and put them in the parent directory of `fall11_whole`. The file structure should look like: ```bash $ tree imagenet22k/ imagenet22k/ ├── ILSVRC2011fall_whole_map_train.txt ├── ILSVRC2011fall_whole_map_val.txt └── fall11_whole ├── n00004475 ├── n00005787 ├── n00006024 ├── n00006484 └── ... ``` ### Evaluation To evaluate a pre-trained `Swin Transformer` on ImageNet val, run: ```bash python -m torch.distributed.launch --nproc_per_node --master_port 12345 main.py --eval \ --cfg --resume --data-path ``` For example, to evaluate the `Swin-B` with a single GPU: ```bash python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py --eval \ --cfg configs/swin/swin_base_patch4_window7_224.yaml --resume swin_base_patch4_window7_224.pth --data-path ``` ### Training from scratch on ImageNet-1K To train a `Swin Transformer` on ImageNet from scratch, run: ```bash python -m torch.distributed.launch --nproc_per_node --master_port 12345 main.py \ --cfg --data-path [--batch-size --output --tag ] ``` **Notes**: - To use zipped ImageNet instead of folder dataset, add `--zip` to the parameters. - To cache the dataset in the memory instead of reading from files every time, add `--cache-mode part`, which will shard the dataset into non-overlapping pieces for different GPUs and only load the corresponding one for each GPU. - When GPU memory is not enough, you can try the following suggestions: - Use gradient accumulation by adding `--accumulation-steps `, set appropriate `` according to your need. - Use gradient checkpointing by adding `--use-checkpoint`, e.g., it saves about 60% memory when training `Swin-B`. Please refer to [this page](https://pytorch.org/docs/stable/checkpoint.html) for more details. - We recommend using multi-node with more GPUs for training very large models, a tutorial can be found in [this page](https://pytorch.org/tutorials/intermediate/dist_tuto.html). - To change config options in general, you can use `--opts KEY1 VALUE1 KEY2 VALUE2`, e.g., `--opts TRAIN.EPOCHS 100 TRAIN.WARMUP_EPOCHS 5` will change total epochs to 100 and warm-up epochs to 5. - For additional options, see [config](config.py) and run `python main.py --help` to get detailed message. For example, to train `Swin Transformer` with 8 GPU on a single node for 300 epochs, run: `Swin-T`: ```bash python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py \ --cfg configs/swin/swin_tiny_patch4_window7_224.yaml --data-path --batch-size 128 ``` `Swin-S`: ```bash python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py \ --cfg configs/swin/swin_small_patch4_window7_224.yaml --data-path --batch-size 128 ``` `Swin-B`: ```bash python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py \ --cfg configs/swin/swin_base_patch4_window7_224.yaml --data-path --batch-size 64 \ --accumulation-steps 2 [--use-checkpoint] ``` ### Pre-training on ImageNet-22K For example, to pre-train a `Swin-B` model on ImageNet-22K: ```bash python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py \ --cfg configs/swin/swin_base_patch4_window7_224_22k.yaml --data-path --batch-size 64 \ --accumulation-steps 8 [--use-checkpoint] ``` ### Fine-tuning on higher resolution For example, to fine-tune a `Swin-B` model pre-trained on 224x224 resolution to 384x384 resolution: ```bashs python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py \ --cfg configs/swin/swin_base_patch4_window12_384_finetune.yaml --pretrained swin_base_patch4_window7_224.pth \ --data-path --batch-size 64 --accumulation-steps 2 [--use-checkpoint] ``` ### Fine-tuning from a ImageNet-22K(21K) pre-trained model For example, to fine-tune a `Swin-B` model pre-trained on ImageNet-22K(21K): ```bashs python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py \ --cfg configs/swin/swin_base_patch4_window7_224_22kto1k_finetune.yaml --pretrained swin_base_patch4_window7_224_22k.pth \ --data-path --batch-size 64 --accumulation-steps 2 [--use-checkpoint] ``` ### Throughput To measure the throughput, run: ```bash python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py \ --cfg --data-path --batch-size 64 --throughput --disable_amp ``` ## Mixture-of-Experts Support ### Install [Tutel](https://github.com/microsoft/tutel) ```bash python3 -m pip uninstall tutel -y python3 -m pip install --user --upgrade git+https://github.com/microsoft/tutel@main ``` ### Training Swin-MoE For example, to train a `Swin-MoE-S` model with 32 experts on ImageNet-22K with 32 GPUs (4 nodes): ```bash python -m torch.distributed.launch --nproc_per_node 8 --nnode=4 \ --node_rank= --master_addr= --master_port 12345 main_moe.py \ --cfg configs/swinmoe/swin_moe_small_patch4_window12_192_32expert_32gpu_22k.yaml --data-path --batch-size 128 ``` ### Evaluating Swin-MoE To evaluate a `Swin-MoE-S` with 32 experts on ImageNet-22K with 32 GPUs (4 nodes): 1. Download the zip file [swin_moe_small_patch4_window12_192_32expert_32gpu_22k.zip](https://github.com/SwinTransformer/storage/releases/download/v2.0.2/swin_moe_small_patch4_window12_192_32expert_32gpu_22k.zip) which contains the pre-trained models for each rank, and unzip them to the folder "swin_moe_small_patch4_window12_192_32expert_32gpu_22k". 2. Run the following evaluation command, note the checkpoint path should not contain the ".rank\" suffix. ```bash python -m torch.distributed.launch --nproc_per_node 8 --nnode=4 \ --node_rank= --master_addr= --master_port 12345 main_moe.py \ --cfg configs/swinmoe/swin_moe_small_patch4_window12_192_32expert_32gpu_22k.yaml --data-path --batch-size 128 \ --resume swin_moe_small_patch4_window12_192_32expert_32gpu_22k/swin_moe_small_patch4_window12_192_32expert_32gpu_22k.pth ``` More Swin-MoE models can be found in [MODEL HUB](MODELHUB.md#imagenet-22k-pretrained-swin-moe-models) ## SimMIM Support ### Evaluating provided models To evaluate a provided model on ImageNet validation set, run: ```bash python -m torch.distributed.launch --nproc_per_node main_simmim_ft.py \ --eval --cfg --resume --data-path ``` For example, to evaluate the `Swin Base` model on a single GPU, run: ```bash python -m torch.distributed.launch --nproc_per_node 1 main_simmim_ft.py \ --eval --cfg configs/simmim/simmim_finetune__swin_base__img224_window7__800ep.yaml --resume simmim_finetune__swin_base__img224_window7__800ep.pth --data-path ``` ### Pre-training with SimMIM To pre-train models with `SimMIM`, run: ```bash python -m torch.distributed.launch --nproc_per_node main_simmim_pt.py \ --cfg --data-path /train [--batch-size --output --tag ] ``` For example, to pre-train `Swin Base` for 800 epochs on one DGX-2 server, run: ```bash python -m torch.distributed.launch --nproc_per_node 16 main_simmim_pt.py \ --cfg configs/simmim/simmim_pretrain__swin_base__img192_window6__800ep.yaml --batch-size 128 --data-path /train [--output --tag ] ``` ### Fine-tuning pre-trained models To fine-tune models pre-trained by `SimMIM`, run: ```bash python -m torch.distributed.launch --nproc_per_node main_simmim_ft.py \ --cfg --data-path --pretrained [--batch-size --output --tag ] ``` For example, to fine-tune `Swin Base` pre-trained by `SimMIM` on one DGX-2 server, run: ```bash python -m torch.distributed.launch --nproc_per_node 16 main_simmim_ft.py \ --cfg configs/simmim/simmim_finetune__swin_base__img224_window7__800ep.yaml --batch-size 128 --data-path --pretrained [--output --tag ] ```