# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # --------------------------------------------------------' import os import torch import yaml from yacs.config import CfgNode as CN # pytorch major version (1.x or 2.x) PYTORCH_MAJOR_VERSION = int(torch.__version__.split('.')[0]) _C = CN() # Base config files _C.BASE = [''] # ----------------------------------------------------------------------------- # Data settings # ----------------------------------------------------------------------------- _C.DATA = CN() # Batch size for a single GPU, could be overwritten by command line argument _C.DATA.BATCH_SIZE = 128 # Path to dataset, could be overwritten by command line argument _C.DATA.DATA_PATH = '/data/fengyang/sunwin/code/swin_conda_env/Swin-Transformer/imagenet/' # Dataset name _C.DATA.DATASET = 'imagenet' # Input image size _C.DATA.IMG_SIZE = 224 # Interpolation to resize image (random, bilinear, bicubic) _C.DATA.INTERPOLATION = 'bicubic' # Use zipped dataset instead of folder dataset # could be overwritten by command line argument _C.DATA.ZIP_MODE = False # Cache Data in Memory, could be overwritten by command line argument _C.DATA.CACHE_MODE = 'part' # Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU. _C.DATA.PIN_MEMORY = True # Number of data loading threads _C.DATA.NUM_WORKERS = 8 # [SimMIM] Mask patch size for MaskGenerator _C.DATA.MASK_PATCH_SIZE = 32 # [SimMIM] Mask ratio for MaskGenerator _C.DATA.MASK_RATIO = 0.6 # ----------------------------------------------------------------------------- # Model settings # ----------------------------------------------------------------------------- _C.MODEL = CN() # Model type _C.MODEL.TYPE = 'swin' # Model name _C.MODEL.NAME = 'swin_tiny_patch4_window7_224' # Pretrained weight from checkpoint, could be imagenet22k pretrained weight # could be overwritten by command line argument _C.MODEL.PRETRAINED = '' # Checkpoint to resume, could be overwritten by command line argument _C.MODEL.RESUME = '/data/fengyang/sunwin/code/swin_conda_env/Swin-Transformer/swin_tiny_patch4_window7_224.pth' # Number of classes, overwritten in data preparation _C.MODEL.NUM_CLASSES = 2 # Dropout rate _C.MODEL.DROP_RATE = 0.0 # Drop path rate _C.MODEL.DROP_PATH_RATE = 0.1 # Label Smoothing _C.MODEL.LABEL_SMOOTHING = 0.1 # Swin Transformer parameters _C.MODEL.SWIN = CN() _C.MODEL.SWIN.PATCH_SIZE = 4 _C.MODEL.SWIN.IN_CHANS = 3 _C.MODEL.SWIN.EMBED_DIM = 96 _C.MODEL.SWIN.DEPTHS = [2, 2, 6, 2] _C.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24] _C.MODEL.SWIN.WINDOW_SIZE = 7 _C.MODEL.SWIN.MLP_RATIO = 4. _C.MODEL.SWIN.QKV_BIAS = True _C.MODEL.SWIN.QK_SCALE = None _C.MODEL.SWIN.APE = False _C.MODEL.SWIN.PATCH_NORM = True # Swin Transformer V2 parameters _C.MODEL.SWINV2 = CN() _C.MODEL.SWINV2.PATCH_SIZE = 4 _C.MODEL.SWINV2.IN_CHANS = 3 _C.MODEL.SWINV2.EMBED_DIM = 96 _C.MODEL.SWINV2.DEPTHS = [2, 2, 6, 2] _C.MODEL.SWINV2.NUM_HEADS = [3, 6, 12, 24] _C.MODEL.SWINV2.WINDOW_SIZE = 7 _C.MODEL.SWINV2.MLP_RATIO = 4. _C.MODEL.SWINV2.QKV_BIAS = True _C.MODEL.SWINV2.APE = False _C.MODEL.SWINV2.PATCH_NORM = True _C.MODEL.SWINV2.PRETRAINED_WINDOW_SIZES = [0, 0, 0, 0] # Swin Transformer MoE parameters _C.MODEL.SWIN_MOE = CN() _C.MODEL.SWIN_MOE.PATCH_SIZE = 4 _C.MODEL.SWIN_MOE.IN_CHANS = 3 _C.MODEL.SWIN_MOE.EMBED_DIM = 96 _C.MODEL.SWIN_MOE.DEPTHS = [2, 2, 6, 2] _C.MODEL.SWIN_MOE.NUM_HEADS = [3, 6, 12, 24] _C.MODEL.SWIN_MOE.WINDOW_SIZE = 7 _C.MODEL.SWIN_MOE.MLP_RATIO = 4. _C.MODEL.SWIN_MOE.QKV_BIAS = True _C.MODEL.SWIN_MOE.QK_SCALE = None _C.MODEL.SWIN_MOE.APE = False _C.MODEL.SWIN_MOE.PATCH_NORM = True _C.MODEL.SWIN_MOE.MLP_FC2_BIAS = True _C.MODEL.SWIN_MOE.INIT_STD = 0.02 _C.MODEL.SWIN_MOE.PRETRAINED_WINDOW_SIZES = [0, 0, 0, 0] _C.MODEL.SWIN_MOE.MOE_BLOCKS = [[-1], [-1], [-1], [-1]] _C.MODEL.SWIN_MOE.NUM_LOCAL_EXPERTS = 1 _C.MODEL.SWIN_MOE.TOP_VALUE = 1 _C.MODEL.SWIN_MOE.CAPACITY_FACTOR = 1.25 _C.MODEL.SWIN_MOE.COSINE_ROUTER = False _C.MODEL.SWIN_MOE.NORMALIZE_GATE = False _C.MODEL.SWIN_MOE.USE_BPR = True _C.MODEL.SWIN_MOE.IS_GSHARD_LOSS = False _C.MODEL.SWIN_MOE.GATE_NOISE = 1.0 _C.MODEL.SWIN_MOE.COSINE_ROUTER_DIM = 256 _C.MODEL.SWIN_MOE.COSINE_ROUTER_INIT_T = 0.5 _C.MODEL.SWIN_MOE.MOE_DROP = 0.0 _C.MODEL.SWIN_MOE.AUX_LOSS_WEIGHT = 0.01 # Swin MLP parameters _C.MODEL.SWIN_MLP = CN() _C.MODEL.SWIN_MLP.PATCH_SIZE = 4 _C.MODEL.SWIN_MLP.IN_CHANS = 3 _C.MODEL.SWIN_MLP.EMBED_DIM = 96 _C.MODEL.SWIN_MLP.DEPTHS = [2, 2, 6, 2] _C.MODEL.SWIN_MLP.NUM_HEADS = [3, 6, 12, 24] _C.MODEL.SWIN_MLP.WINDOW_SIZE = 7 _C.MODEL.SWIN_MLP.MLP_RATIO = 4. _C.MODEL.SWIN_MLP.APE = False _C.MODEL.SWIN_MLP.PATCH_NORM = True # [SimMIM] Norm target during training _C.MODEL.SIMMIM = CN() _C.MODEL.SIMMIM.NORM_TARGET = CN() _C.MODEL.SIMMIM.NORM_TARGET.ENABLE = False _C.MODEL.SIMMIM.NORM_TARGET.PATCH_SIZE = 47 # ----------------------------------------------------------------------------- # Training settings # ----------------------------------------------------------------------------- _C.TRAIN = CN() _C.TRAIN.START_EPOCH = 0 _C.TRAIN.EPOCHS = 300 _C.TRAIN.WARMUP_EPOCHS = 20 _C.TRAIN.WEIGHT_DECAY = 0.05 _C.TRAIN.BASE_LR = 5e-4 _C.TRAIN.WARMUP_LR = 5e-7 _C.TRAIN.MIN_LR = 5e-6 # Clip gradient norm _C.TRAIN.CLIP_GRAD = 5.0 # Auto resume from latest checkpoint _C.TRAIN.AUTO_RESUME = True # Gradient accumulation steps # could be overwritten by command line argument _C.TRAIN.ACCUMULATION_STEPS = 1 # Whether to use gradient checkpointing to save memory # could be overwritten by command line argument _C.TRAIN.USE_CHECKPOINT = False # LR scheduler _C.TRAIN.LR_SCHEDULER = CN() _C.TRAIN.LR_SCHEDULER.NAME = 'cosine' # Epoch interval to decay LR, used in StepLRScheduler _C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30 # LR decay rate, used in StepLRScheduler _C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1 # warmup_prefix used in CosineLRScheduler _C.TRAIN.LR_SCHEDULER.WARMUP_PREFIX = True # [SimMIM] Gamma / Multi steps value, used in MultiStepLRScheduler _C.TRAIN.LR_SCHEDULER.GAMMA = 0.1 _C.TRAIN.LR_SCHEDULER.MULTISTEPS = [] # Optimizer _C.TRAIN.OPTIMIZER = CN() _C.TRAIN.OPTIMIZER.NAME = 'adamw' # Optimizer Epsilon _C.TRAIN.OPTIMIZER.EPS = 1e-8 # Optimizer Betas _C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999) # SGD momentum _C.TRAIN.OPTIMIZER.MOMENTUM = 0.9 # [SimMIM] Layer decay for fine-tuning _C.TRAIN.LAYER_DECAY = 1.0 # MoE _C.TRAIN.MOE = CN() # Only save model on master device _C.TRAIN.MOE.SAVE_MASTER = False # ----------------------------------------------------------------------------- # Augmentation settings # ----------------------------------------------------------------------------- _C.AUG = CN() # Color jitter factor _C.AUG.COLOR_JITTER = 0.4 # Use AutoAugment policy. "v0" or "original" _C.AUG.AUTO_AUGMENT = 'rand-m9-mstd0.5-inc1' # Random erase prob _C.AUG.REPROB = 0.25 # Random erase mode _C.AUG.REMODE = 'pixel' # Random erase count _C.AUG.RECOUNT = 1 # Mixup alpha, mixup enabled if > 0 _C.AUG.MIXUP = 0.8 # Cutmix alpha, cutmix enabled if > 0 _C.AUG.CUTMIX = 1.0 # Cutmix min/max ratio, overrides alpha and enables cutmix if set _C.AUG.CUTMIX_MINMAX = None # Probability of performing mixup or cutmix when either/both is enabled _C.AUG.MIXUP_PROB = 1.0 # Probability of switching to cutmix when both mixup and cutmix enabled _C.AUG.MIXUP_SWITCH_PROB = 0.5 # How to apply mixup/cutmix params. Per "batch", "pair", or "elem" _C.AUG.MIXUP_MODE = 'batch' # ----------------------------------------------------------------------------- # Testing settings # ----------------------------------------------------------------------------- _C.TEST = CN() # Whether to use center crop when testing _C.TEST.CROP = True # Whether to use SequentialSampler as validation sampler _C.TEST.SEQUENTIAL = False _C.TEST.SHUFFLE = False # ----------------------------------------------------------------------------- # Misc # ----------------------------------------------------------------------------- # [SimMIM] Whether to enable pytorch amp, overwritten by command line argument _C.ENABLE_AMP = False # Enable Pytorch automatic mixed precision (amp). _C.AMP_ENABLE = True # [Deprecated] Mixed precision opt level of apex, if O0, no apex amp is used ('O0', 'O1', 'O2') _C.AMP_OPT_LEVEL = '' # Path to output folder, overwritten by command line argument _C.OUTPUT = '' # Tag of experiment, overwritten by command line argument _C.TAG = 'default' # Frequency to save checkpoint _C.SAVE_FREQ = 1 # Frequency to logging info _C.PRINT_FREQ = 10 # Fixed random seed _C.SEED = 0 # Perform evaluation only, overwritten by command line argument _C.EVAL_MODE = False # Test throughput only, overwritten by command line argument _C.THROUGHPUT_MODE = False # local rank for DistributedDataParallel, given by command line argument _C.LOCAL_RANK = 0 # for acceleration _C.FUSED_WINDOW_PROCESS = False _C.FUSED_LAYERNORM = False def _update_config_from_file(config, cfg_file): config.defrost() with open(cfg_file, 'r') as f: yaml_cfg = yaml.load(f, Loader=yaml.FullLoader) for cfg in yaml_cfg.setdefault('BASE', ['']): if cfg: _update_config_from_file( config, os.path.join(os.path.dirname(cfg_file), cfg) ) print('=> merge config from {}'.format(cfg_file)) config.merge_from_file(cfg_file) config.freeze() def update_config(config, args): _update_config_from_file(config, args.cfg) config.defrost() if args.opts: config.merge_from_list(args.opts) def _check_args(name): if hasattr(args, name) and eval(f'args.{name}'): return True return False # merge from specific arguments if _check_args('batch_size'): config.DATA.BATCH_SIZE = args.batch_size if _check_args('data_path'): config.DATA.DATA_PATH = args.data_path if _check_args('zip'): config.DATA.ZIP_MODE = True if _check_args('cache_mode'): config.DATA.CACHE_MODE = args.cache_mode if _check_args('pretrained'): config.MODEL.PRETRAINED = args.pretrained if _check_args('resume'): config.MODEL.RESUME = args.resume if _check_args('accumulation_steps'): config.TRAIN.ACCUMULATION_STEPS = args.accumulation_steps if _check_args('use_checkpoint'): config.TRAIN.USE_CHECKPOINT = True if _check_args('amp_opt_level'): print("[warning] Apex amp has been deprecated, please use pytorch amp instead!") if args.amp_opt_level == 'O0': config.AMP_ENABLE = False if _check_args('disable_amp'): config.AMP_ENABLE = False if _check_args('output'): config.OUTPUT = args.output if _check_args('tag'): config.TAG = args.tag if _check_args('eval'): config.EVAL_MODE = True if _check_args('throughput'): config.THROUGHPUT_MODE = True # [SimMIM] if _check_args('enable_amp'): config.ENABLE_AMP = args.enable_amp # for acceleration if _check_args('fused_window_process'): config.FUSED_WINDOW_PROCESS = True if _check_args('fused_layernorm'): config.FUSED_LAYERNORM = True ## Overwrite optimizer if not None, currently we use it for [fused_adam, fused_lamb] if _check_args('optim'): config.TRAIN.OPTIMIZER.NAME = args.optim # set local rank for distributed training if PYTORCH_MAJOR_VERSION == 1: config.LOCAL_RANK = args.local_rank else: config.LOCAL_RANK = int(os.environ['LOCAL_RANK']) # output folder config.OUTPUT = os.path.join(config.OUTPUT, config.MODEL.NAME, config.TAG) config.freeze() def get_config(args): """Get a yacs CfgNode object with default values.""" # Return a clone so that the defaults will not be altered # This is for the "local variable" use pattern config = _C.clone() update_config(config, args) return config