123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- import os
- from typing import Any, Dict, List, Optional, Tuple
- import cv2
- import numpy as np
- import torch
- from loguru import logger
- from superpoint_superglue_deployment.superglue import SuperGlue
- __all__ = ["SuperGlueHandler"]
- class SuperGlueHandler:
- __CACHED_DIR = os.path.join(os.path.expanduser("~"), ".cache/torch/hub/checkpoints")
- __MODEL_WEIGHTS_DICT: Dict[str, Any] = {
- "indoor": {
- "name": "superglue_indoor.pth",
- "url": "https://github.com/xmba15/superpoint_superglue_deployment/releases/download/model_weights/superglue_indoor.pth", # noqa: E501
- },
- "outdoor": {
- "name": "superglue_outdoor.pth",
- "url": "https://github.com/xmba15/superpoint_superglue_deployment/releases/download/model_weights/superglue_outdoor.pth", # noqa: E501
- },
- }
- __MODEL_WEIGHTS_OUTDOOR_FILE_NAME = "superglue_outdoor.pth"
- __DEFAULT_CONFIG: Dict[str, Any] = {
- "descriptor_dim": 256,
- "weights": "outdoor",
- "keypoint_encoder": [32, 64, 128, 256],
- "GNN_layers": ["self", "cross"] * 9,
- "sinkhorn_iterations": 100,
- "match_threshold": 0.2,
- "use_gpu": False,
- }
- def __init__(
- self,
- config: Optional[Dict[str, Any]] = None,
- ):
- self._config = self.__DEFAULT_CONFIG.copy()
- if config is not None:
- self._config.update(config)
- assert self._config["weights"] in self.__MODEL_WEIGHTS_DICT
- os.makedirs(self.__CACHED_DIR, exist_ok=True)
- if self._config["use_gpu"] and not torch.cuda.is_available():
- logger.info("gpu environment is not available, falling back to cpu")
- self._config["use_gpu"] = False
- self._device = torch.device("cuda" if self._config["use_gpu"] else "cpu")
- self._superglue_engine = SuperGlue(self._config)
- if not os.path.isfile(
- os.path.join(self.__CACHED_DIR, self.__MODEL_WEIGHTS_DICT[self._config["weights"]]["name"])
- ):
- torch.hub.load_state_dict_from_url(
- self.__MODEL_WEIGHTS_DICT[self._config["weights"]]["url"], map_location=lambda storage, loc: storage
- )
- self._superglue_engine.load_state_dict(
- torch.load(os.path.join(self.__CACHED_DIR, self.__MODEL_WEIGHTS_DICT[self._config["weights"]]["name"]))
- )
- self._superglue_engine = self._superglue_engine.eval().to(self._device)
- logger.info(f"loaded superglue weights {self.__MODEL_WEIGHTS_DICT[self._config['weights']]['name']}")
- @property
- def device(self):
- return self._device
- def run(
- self,
- query_pred: Dict[str, torch.Tensor],
- ref_pred: Dict[str, torch.Tensor],
- query_shape: Tuple[int, int],
- ref_shape: Tuple[int, int],
- ) -> Dict[str, torch.Tensor]:
- """
- Parameters
- ----------
- query_pred
- dict data in the following form
- {
- "keypoints": List[torch.Tensor] # tensor has shape: num keypoints x 2
- "descriptors": List[torch.Tensor] # tensor has shape: 256 x num keypoints
- }
- ref_pred
- dict data in the same form as query_pred's
- """
- data_dict: Dict[str, Any] = dict()
- data_dict = {**data_dict, **{k + "0": v for k, v in query_pred.items()}}
- data_dict = {**data_dict, **{k + "1": v for k, v in ref_pred.items()}}
- for k in data_dict:
- if isinstance(data_dict[k], (list, tuple)):
- data_dict[k] = torch.stack(data_dict[k])
- del query_pred, ref_pred
- for k in data_dict:
- if isinstance(data_dict[k], torch.Tensor) and data_dict[k].device.type != self._device.type:
- data_dict[k] = data_dict[k].to(self._device)
- data_dict["image0_shape"] = query_shape
- data_dict["image1_shape"] = ref_shape
- with torch.no_grad():
- return self._superglue_engine(data_dict)
- def match(
- self,
- query_pred: Dict[str, torch.Tensor],
- ref_pred: Dict[str, torch.Tensor],
- query_shape: Tuple[int, int],
- ref_shape: Tuple[int, int],
- ) -> List[cv2.DMatch]:
- num_query_kpts = query_pred["keypoints"][0].size()[0]
- num_ref_kpts = ref_pred["keypoints"][0].size()[0]
- pred = self.run(
- query_pred,
- ref_pred,
- query_shape,
- ref_shape,
- )
- matches0_to_1 = pred["matches0"].cpu().numpy().squeeze(0)
- query_matching_scores = pred["matching_scores0"].cpu().numpy().squeeze(0)
- valid = matches0_to_1 > -1
- del pred
- matched_query_indices = np.arange(num_query_kpts)[valid]
- matched_ref_indices = np.arange(num_ref_kpts)[matches0_to_1[valid]]
- matches = [
- cv2.DMatch(
- _distance=1 - query_matching_scores[matched_query_idx],
- _queryIdx=matched_query_idx,
- _trainIdx=matched_ref_idx,
- )
- for matched_query_idx, matched_ref_idx in zip(matched_query_indices, matched_ref_indices)
- ]
- return matches
|