123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 |
- # %BANNER_BEGIN%
- # ---------------------------------------------------------------------
- # %COPYRIGHT_BEGIN%
- #
- # Magic Leap, Inc. ("COMPANY") CONFIDENTIAL
- #
- # Unpublished Copyright (c) 2020
- # Magic Leap, Inc., All Rights Reserved.
- #
- # NOTICE: All information contained herein is, and remains the property
- # of COMPANY. The intellectual and technical concepts contained herein
- # are proprietary to COMPANY and may be covered by U.S. and Foreign
- # Patents, patents in process, and are protected by trade secret or
- # copyright law. Dissemination of this information or reproduction of
- # this material is strictly forbidden unless prior written permission is
- # obtained from COMPANY. Access to the source code contained herein is
- # hereby forbidden to anyone except current COMPANY employees, managers
- # or contractors who have executed Confidentiality and Non-disclosure
- # agreements explicitly covering such access.
- #
- # The copyright notice above does not evidence any actual or intended
- # publication or disclosure of this source code, which includes
- # information that is confidential and/or proprietary, and is a trade
- # secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION,
- # PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS
- # SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS
- # STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND
- # INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE
- # CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS
- # TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
- # USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART.
- #
- # %COPYRIGHT_END%
- # ----------------------------------------------------------------------
- # %AUTHORS_BEGIN%
- #
- # Originating Authors: Paul-Edouard Sarlin
- #
- # %AUTHORS_END%
- # --------------------------------------------------------------------*/
- # %BANNER_END%
- from copy import deepcopy
- from typing import List, Tuple
- import torch
- from torch import nn
- def MLP(channels: List[int], do_bn: bool = True) -> nn.Module:
- """ Multi-layer perceptron """
- n = len(channels)
- layers = []
- for i in range(1, n):
- layers.append(
- nn.Conv1d(channels[i - 1], channels[i], kernel_size=1, bias=True))
- if i < (n-1):
- if do_bn:
- layers.append(nn.BatchNorm1d(channels[i]))
- layers.append(nn.ReLU())
- return nn.Sequential(*layers)
- def normalize_keypoints(kpts, image_shape):
- """ Normalize keypoints locations based on image image_shape"""
- height, width = image_shape[:2]
- one = kpts.new_tensor(1)
- size = torch.stack([one*width, one*height])[None]
- center = size / 2
- scaling = size.max(1, keepdim=True).values * 0.7
- return (kpts - center[:, None, :]) / scaling[:, None, :]
- class KeypointEncoder(nn.Module):
- """ Joint encoding of visual appearance and location using MLPs"""
- def __init__(self, feature_dim: int, layers: List[int]) -> None:
- super().__init__()
- self.encoder = MLP([3] + layers + [feature_dim])
- nn.init.constant_(self.encoder[-1].bias, 0.0)
- def forward(self, kpts, scores):
- inputs = [kpts.transpose(1, 2), scores.unsqueeze(1)]
- return self.encoder(torch.cat(inputs, dim=1))
- def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> Tuple[torch.Tensor,torch.Tensor]:
- dim = query.shape[1]
- scores = torch.einsum('bdhn,bdhm->bhnm', query, key) / dim**.5
- prob = torch.nn.functional.softmax(scores, dim=-1)
- return torch.einsum('bhnm,bdhm->bdhn', prob, value), prob
- class MultiHeadedAttention(nn.Module):
- """ Multi-head attention to increase model expressivitiy """
- def __init__(self, num_heads: int, d_model: int):
- super().__init__()
- assert d_model % num_heads == 0
- self.dim = d_model // num_heads
- self.num_heads = num_heads
- self.merge = nn.Conv1d(d_model, d_model, kernel_size=1)
- self.proj = nn.ModuleList([deepcopy(self.merge) for _ in range(3)])
- def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor:
- batch_dim = query.size(0)
- query, key, value = [l(x).view(batch_dim, self.dim, self.num_heads, -1)
- for l, x in zip(self.proj, (query, key, value))]
- x, _ = attention(query, key, value)
- return self.merge(x.contiguous().view(batch_dim, self.dim*self.num_heads, -1))
- class AttentionalPropagation(nn.Module):
- def __init__(self, feature_dim: int, num_heads: int):
- super().__init__()
- self.attn = MultiHeadedAttention(num_heads, feature_dim)
- self.mlp = MLP([feature_dim*2, feature_dim*2, feature_dim])
- nn.init.constant_(self.mlp[-1].bias, 0.0)
- def forward(self, x: torch.Tensor, source: torch.Tensor) -> torch.Tensor:
- message = self.attn(x, source, source)
- return self.mlp(torch.cat([x, message], dim=1))
- class AttentionalGNN(nn.Module):
- def __init__(self, feature_dim: int, layer_names: List[str]) -> None:
- super().__init__()
- self.layers = nn.ModuleList([
- AttentionalPropagation(feature_dim, 4)
- for _ in range(len(layer_names))])
- self.names = layer_names
- def forward(self, desc0: torch.Tensor, desc1: torch.Tensor) -> Tuple[torch.Tensor,torch.Tensor]:
- for layer, name in zip(self.layers, self.names):
- if name == 'cross':
- src0, src1 = desc1, desc0
- else: # if name == 'self':
- src0, src1 = desc0, desc1
- delta0, delta1 = layer(desc0, src0), layer(desc1, src1)
- desc0, desc1 = (desc0 + delta0), (desc1 + delta1)
- return desc0, desc1
- def log_sinkhorn_iterations(Z: torch.Tensor, log_mu: torch.Tensor, log_nu: torch.Tensor, iters: int) -> torch.Tensor:
- """ Perform Sinkhorn Normalization in Log-space for stability"""
- u, v = torch.zeros_like(log_mu), torch.zeros_like(log_nu)
- for _ in range(iters):
- u = log_mu - torch.logsumexp(Z + v.unsqueeze(1), dim=2)
- v = log_nu - torch.logsumexp(Z + u.unsqueeze(2), dim=1)
- return Z + u.unsqueeze(2) + v.unsqueeze(1)
- def log_optimal_transport(scores: torch.Tensor, alpha: torch.Tensor, iters: int) -> torch.Tensor:
- """ Perform Differentiable Optimal Transport in Log-space for stability"""
- b, m, n = scores.shape
- one = scores.new_tensor(1)
- ms, ns = (m*one).to(scores), (n*one).to(scores)
- bins0 = alpha.expand(b, m, 1)
- bins1 = alpha.expand(b, 1, n)
- alpha = alpha.expand(b, 1, 1)
- couplings = torch.cat([torch.cat([scores, bins0], -1),
- torch.cat([bins1, alpha], -1)], 1)
- norm = - (ms + ns).log()
- log_mu = torch.cat([norm.expand(m), ns.log()[None] + norm])
- log_nu = torch.cat([norm.expand(n), ms.log()[None] + norm])
- log_mu, log_nu = log_mu[None].expand(b, -1), log_nu[None].expand(b, -1)
- Z = log_sinkhorn_iterations(couplings, log_mu, log_nu, iters)
- Z = Z - norm # multiply probabilities by M+N
- return Z
- def arange_like(x, dim: int):
- return x.new_ones(x.shape[dim]).cumsum(0) - 1 # traceable in 1.1
- class SuperGlue(nn.Module):
- """SuperGlue feature matching middle-end
- Given two sets of keypoints and locations, we determine the
- correspondences by:
- 1. Keypoint Encoding (normalization + visual feature and location fusion)
- 2. Graph Neural Network with multiple self and cross-attention layers
- 3. Final projection layer
- 4. Optimal Transport Layer (a differentiable Hungarian matching algorithm)
- 5. Thresholding matrix based on mutual exclusivity and a match_threshold
- The correspondence ids use -1 to indicate non-matching points.
- Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew
- Rabinovich. SuperGlue: Learning Feature Matching with Graph Neural
- Networks. In CVPR, 2020. https://arxiv.org/abs/1911.11763
- """
- default_config = {
- 'descriptor_dim': 256,
- 'weights': 'indoor',
- 'keypoint_encoder': [32, 64, 128, 256],
- 'GNN_layers': ['self', 'cross'] * 9,
- 'sinkhorn_iterations': 100,
- 'match_threshold': 0.2,
- }
- def __init__(self, config):
- super().__init__()
- self.config = {**self.default_config, **config}
- self.kenc = KeypointEncoder(
- self.config['descriptor_dim'], self.config['keypoint_encoder'])
- self.gnn = AttentionalGNN(
- feature_dim=self.config['descriptor_dim'], layer_names=self.config['GNN_layers'])
- self.final_proj = nn.Conv1d(
- self.config['descriptor_dim'], self.config['descriptor_dim'],
- kernel_size=1, bias=True)
- bin_score = torch.nn.Parameter(torch.tensor(1.))
- self.register_parameter('bin_score', bin_score)
- def forward(self, data):
- """Run SuperGlue on a pair of keypoints and descriptors"""
- desc0, desc1 = data['descriptors0'], data['descriptors1']
- kpts0, kpts1 = data['keypoints0'], data['keypoints1']
- if kpts0.shape[1] == 0 or kpts1.shape[1] == 0: # no keypoints
- shape0, shape1 = kpts0.shape[:-1], kpts1.shape[:-1]
- return {
- 'matches0': kpts0.new_full(shape0, -1, dtype=torch.int),
- 'matches1': kpts1.new_full(shape1, -1, dtype=torch.int),
- 'matching_scores0': kpts0.new_zeros(shape0),
- 'matching_scores1': kpts1.new_zeros(shape1),
- }
- # Keypoint normalization.
- kpts0 = normalize_keypoints(kpts0, data['image0_shape'])
- kpts1 = normalize_keypoints(kpts1, data['image1_shape'])
- # Keypoint MLP encoder.
- desc0 = desc0 + self.kenc(kpts0, data['scores0'])
- desc1 = desc1 + self.kenc(kpts1, data['scores1'])
- del data
- # Multi-layer Transformer network.
- desc0, desc1 = self.gnn(desc0, desc1)
- # Final MLP projection.
- mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)
- # Compute matching descriptor distance.
- scores = torch.einsum('bdn,bdm->bnm', mdesc0, mdesc1)
- scores = scores / self.config['descriptor_dim']**.5
- # Run the optimal transport.
- scores = log_optimal_transport(
- scores, self.bin_score,
- iters=self.config['sinkhorn_iterations'])
- # Get the matches with score above "match_threshold".
- max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1)
- indices0, indices1 = max0.indices, max1.indices
- mutual0 = arange_like(indices0, 1)[None] == indices1.gather(1, indices0)
- mutual1 = arange_like(indices1, 1)[None] == indices0.gather(1, indices1)
- zero = scores.new_tensor(0)
- mscores0 = torch.where(mutual0, max0.values.exp(), zero)
- mscores1 = torch.where(mutual1, mscores0.gather(1, indices1), zero)
- valid0 = mutual0 & (mscores0 > self.config['match_threshold'])
- valid1 = mutual1 & valid0.gather(1, indices1)
- indices0 = torch.where(valid0, indices0, indices0.new_tensor(-1))
- indices1 = torch.where(valid1, indices1, indices1.new_tensor(-1))
- return {
- 'matches0': indices0, # use -1 for invalid match
- 'matches1': indices1, # use -1 for invalid match
- 'matching_scores0': mscores0,
- 'matching_scores1': mscores1,
- }
|