123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- import os
- from typing import Any, Dict, List, Optional, Tuple, Union
- import cv2
- import numpy as np
- import torch
- from loguru import logger
- from superpoint_superglue_deployment.core import assert_single_channel
- from superpoint_superglue_deployment.superpoint import SuperPoint
- __all__ = ["SuperPointHandler"]
- class SuperPointHandler:
- __CACHED_DIR = os.path.join(os.path.expanduser("~"), ".cache/torch/hub/checkpoints")
- __MODEL_WEIGHTS_FILE_NAME = "superpoint_v1.pth"
- __MODEL_WEIGHTS_URL = (
- "https://github.com/xmba15/superpoint_superglue_deployment/releases/download/model_weights/superpoint_v1.pth"
- )
- __DEFAULT_CONFIG: Dict[str, Any] = {
- "descriptor_dim": 256,
- "nms_radius": 4,
- "keypoint_threshold": 0.005,
- "max_keypoints": -1,
- "remove_borders": 4,
- "input_shape": (-1, -1),
- "use_gpu": True,
- }
- def __init__(
- self,
- config: Optional[Dict[str, Any]] = None, shape=160
- ):
- self.shape = shape
- self._config = self.__DEFAULT_CONFIG.copy()
- if config is not None:
- self._config.update(config)
- os.makedirs(self.__CACHED_DIR, exist_ok=True)
- if all([e > 0 for e in self._config["input_shape"]]):
- self._validate_input_shape(self._config["input_shape"])
- if self._config["use_gpu"] and not torch.cuda.is_available():
- logger.info("gpu environment is not available, falling back to cpu")
- self._config["use_gpu"] = False
- self._device = torch.device("cuda" if self._config["use_gpu"] else "cpu")
- self._superpoint_engine = SuperPoint(self._config)
- if not os.path.isfile(os.path.join(self.__CACHED_DIR, self.__MODEL_WEIGHTS_FILE_NAME)):
- torch.hub.load_state_dict_from_url(self.__MODEL_WEIGHTS_URL, map_location=lambda storage, loc: storage)
- self._superpoint_engine.load_state_dict(
- torch.load(os.path.join(self.__CACHED_DIR, self.__MODEL_WEIGHTS_FILE_NAME))
- )
- self._superpoint_engine = self._superpoint_engine.eval().to(self._device)
- logger.info(f"loaded superpoint weights {self.__MODEL_WEIGHTS_FILE_NAME}")
- def _validate_input_shape(self, image_shape: Tuple[int, int]):
- assert (
- max(image_shape) >= self.shape and max(image_shape) <= 4100
- ), f"input resolution {image_shape} is too small or too large"
- @property
- def device(self):
- return self._device
- def run(self, image: np.ndarray) -> Dict[str, Tuple[torch.Tensor]]:
- """
- Returns
- -------
- Dict[str, Tuple[torch.Tensor]]
- dict data in the following form:
- {
- "keypoints": List[torch.Tensor] # tensor has shape: num keypoints x 2
- "scores": Tuple[torch.Tensor] # tensor has shape: num keypoints
- "descriptors": List[torch.Tensor] # tensor has shape: 256 x num keypoints
- }
- """
- assert_single_channel(image)
- self._validate_input_shape(image.shape[:2])
- with torch.no_grad():
- pred = self._superpoint_engine({"image": self._to_tensor(image)})
- if all([e > 0 for e in self._config["input_shape"]]):
- pred["keypoints"][0] = torch.mul(
- pred["keypoints"][0],
- torch.from_numpy(np.divide(image.shape[:2][::-1], self._config["input_shape"][::-1])).to(self._device),
- )
- return pred
- def process_prediction(self, pred: Dict[str, torch.Tensor]) -> Tuple[List[cv2.KeyPoint], np.ndarray]:
- keypoints_arr = pred["keypoints"][0].cpu().numpy() # num keypoints x 2
- scores_arr = pred["scores"][0].cpu().numpy() # num keypoints
- descriptors_arr = pred["descriptors"][0].cpu().numpy() # 256 x num keypoints
- del pred
- num_keypoints = keypoints_arr.shape[0]
- if num_keypoints == 0:
- return [], np.array([])
- keypoints = []
- for idx in range(num_keypoints):
- keypoint = cv2.KeyPoint()
- keypoint.pt = keypoints_arr[idx]
- keypoint.response = scores_arr[idx]
- keypoints.append(keypoint)
- return keypoints, descriptors_arr.transpose(1, 0)
- def to_prediction(
- self,
- keypoints: List[cv2.KeyPoint],
- descriptors: np.ndarray,
- ) -> Dict[str, Union[Tuple[torch.Tensor], List[torch.Tensor]]]:
- pred: Dict[str, Union[Tuple[torch.Tensor], List[torch.Tensor]]] = dict()
- pred["keypoints"] = [
- torch.from_numpy(np.array([keypoint.pt for keypoint in keypoints])).float().to(self._device)
- ]
- pred["scores"] = (
- torch.from_numpy(np.array([keypoint.response for keypoint in keypoints])).float().to(self._device),
- )
- pred["descriptors"] = [torch.from_numpy(descriptors.transpose(1, 0)).float().to(self._device)]
- return pred
- def detect_and_compute(self, image: np.ndarray) -> Tuple[List[cv2.KeyPoint], np.ndarray]:
- pred = self.run(image)
- return self.process_prediction(pred)
- def detect(self, image) -> List[cv2.KeyPoint]:
- return self.detect_and_compute(image)[0]
- def _to_tensor(self, image: np.ndarray):
- if all([e > 0 for e in self._config["input_shape"]]):
- return (
- torch.from_numpy(cv2.resize(image, self._config["input_shape"][::-1]).astype(np.float32) / 255.0)
- .float()[None, None]
- .to(self._device)
- )
- else:
- return torch.from_numpy(image.astype(np.float32) / 255.0).float()[None, None].to(self._device)
|