#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/4 0004 下午 1:52 # @Author : liudan # @File : image-stitching.py # @Software: pycharm import cv2 as cv import cv2 import numpy as np from loguru import logger import os from superpoint_superglue_deployment import Matcher def registration_demo(): query_image = cv2.imread('./data/stitcher_image/frame_000240.jpg') #hw ref_image = cv2.imread('./data/stitcher_image/frame_000330.jpg') new_size = (1420, 800) # W,H query_image_resize = cv2.resize(query_image,new_size) ref_image_resize = cv2.resize(ref_image,new_size) query_gray = cv2.cvtColor(query_image_resize, cv2.COLOR_BGR2GRAY) ref_gray = cv2.cvtColor(ref_image_resize, cv2.COLOR_BGR2GRAY) superglue_matcher = Matcher( { "superpoint": { "input_shape": (-1, -1), "keypoint_threshold": 0.003, }, "superglue": { "match_threshold": 0.5, }, "use_gpu": True, } ) query_kpts, ref_kpts, _, _, matches = superglue_matcher.match(query_gray, ref_gray) M, mask = cv2.findHomography( np.float64([query_kpts[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2), np.float64([ref_kpts[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2), method=cv2.USAC_MAGSAC, ransacReprojThreshold=5.0, maxIters=10000, confidence=0.95, ) logger.info(f"number of inliers: {mask.sum()}") matches = np.array(matches)[np.all(mask > 0, axis=1)] matches = sorted(matches, key=lambda match: match.distance) matched_image = cv2.drawMatches( query_image_resize, query_kpts, ref_image_resize, ref_kpts, matches[:50], None, flags=2, ) wrap_image = cv.warpPerspective(query_image_resize, M, (ref_image_resize.shape[1] + query_image_resize.shape[1], ref_image_resize.shape[0])) wrap_image = cv2.resize(wrap_image,(ref_image.shape[1]+query_image.shape[1], ref_image.shape[0])) # wrap_filename = f"wrap_image_{idx1}_{idx2}_{iteration}.jpg" # cv2.imwrite(os.path.join(demo_image_path, wrap_filename), wrap_image) # cv2.imwrite(os.path.join(demo_image_path + f"wrap_image.jpg"), wrap_image) wrap_image[0:ref_image.shape[0], 0: ref_image.shape[1]] =ref_image cv2.imwrite("image2.jpg", wrap_image) return wrap_image if __name__ == "__main__": registration_demo()