train_data.py 1.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. import os
  2. import shutil
  3. from batch_process import batch_save_txt
  4. from params import *
  5. from remove_data import copytree
  6. from split_train_val import split_train_val
  7. from data_2_test import data_to_test
  8. import time
  9. import shutil
  10. from train import multigpu_train
  11. from train import save_pb_model
  12. # from test import eval_file_200, score_the_ocr_model
  13. def del_file(path_data):
  14. if os.path.exists(path_data):
  15. for i in os.listdir(path_data) :
  16. file_data = path_data + "/" + i
  17. if os.path.isfile(file_data) == True:
  18. os.remove(file_data)
  19. else:
  20. del_file(file_data)
  21. del_file(path_data) # 删除data文件夹下已存在文件
  22. copytree(old_file_path,new_file_path) # 将 field_data现场数据复制到data/total_data下
  23. split_train_val(dataset_path,train_set_save_path,val_set_save_path) # 划分训练集和测试集
  24. # 生成对应的txt文件
  25. rootdir = os.path.join(dir, 'train')
  26. batch_save_txt(rootdir)
  27. rootdir = os.path.join(dir, 'val')
  28. batch_save_txt(rootdir)
  29. data_to_test() # 将测试集数据转换为测试所需格式
  30. multigpu_train.MultigpuTrain().main() # 训练
  31. multigpu_train.SavePb().save_pb(argv=None) # 保存pb模式
  32. # del multigpu_train
  33. # for key in list(globals().keys()):
  34. # if not key.startswith("__"):
  35. # globals().pop(key)
  36. # eval_file_200.run(1)
  37. #
  38. # score_the_ocr_model.score_ocr_model()