params.py 1.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. import os
  2. total_path = '/data2/liudan/ocr/'
  3. # 删除已存在文件路径
  4. path_data = os.path.join(total_path, 'data')
  5. # 备份total_data路径
  6. old_file_path = os.path.join(total_path, 'field_data')
  7. new_file_path = os.path.join(total_path, 'data/total_data')
  8. # 划分数据集路径
  9. dataset_path = os.path.join(total_path, 'data/total_data')
  10. train_set_save_path = os.path.join(total_path, 'data/train')
  11. val_set_save_path = os.path.join(total_path, 'data/val')
  12. # batch_process路径
  13. dir = os.path.join(total_path, 'data')
  14. # multigpu_train.py路径
  15. train_path = '/data2/liudan/ocr/model_saved/cscs/'
  16. # pretrained_model_path = os.path.join(train_path, 'pretrain_model/model.ckpt-103336')
  17. train_save_path = os.path.join(train_path, '09-01') # train得到的数据位置(.index, .meta, .data),这里表示save_pb_model的输入
  18. pretrained_model_path1 = os.path.join(train_path, '09-01')
  19. save_pb_path = os.path.join(train_path, '0902/') # .pb文件位置
  20. save_str_hegd_path = os.path.join(train_path, '/evalsave/0902')
  21. # score_the_ocr_model中测试数据位置
  22. testdat_msg = os.path.join(total_path, 'data/ocr_txt/')
  23. eval_saved = os.path.join(train_path, '/evalsave/0902')