import os import shutil from batch_process import batch_save_txt from params import * from remove_data import copytree from split_train_val import split_train_val from data_2_test import data_to_test import time import shutil from train import multigpu_train from train import save_pb_model # from test import eval_file_200, score_the_ocr_model def del_file(path_data): if os.path.exists(path_data): for i in os.listdir(path_data) : file_data = path_data + "/" + i if os.path.isfile(file_data) == True: os.remove(file_data) else: del_file(file_data) del_file(path_data) # 删除data文件夹下已存在文件 copytree(old_file_path,new_file_path) # 将 field_data现场数据复制到data/total_data下 split_train_val(dataset_path,train_set_save_path,val_set_save_path) # 划分训练集和测试集 # 生成对应的txt文件 rootdir = os.path.join(dir, 'train') batch_save_txt(rootdir) rootdir = os.path.join(dir, 'val') batch_save_txt(rootdir) data_to_test() # 将测试集数据转换为测试所需格式 multigpu_train.MultigpuTrain().main() # 训练 multigpu_train.SavePb().save_pb(argv=None) # 保存pb模式 # del multigpu_train # for key in list(globals().keys()): # if not key.startswith("__"): # globals().pop(key) # eval_file_200.run(1) # # score_the_ocr_model.score_ocr_model()