2 Commits 0f3fba2861 ... 9f772f75af

Author SHA1 Message Date
  zbc 9f772f75af add: readme 3 weeks ago
  zbc 0f3fba2861 add: readme 3 weeks ago
1 changed files with 26 additions and 11 deletions
  1. 26 11
      readme.md

+ 26 - 11
readme.md

@@ -1,11 +1,26 @@
-FOT ocr model deployment project
-
-本工程将现场采集的数字表ocr图片数据经过预处理后,用于微调训练fots模型的现场部署版本。
-包括了数据预处理代码和训练代码以及模型效果评估测试代码。
-执行步骤:
-1 将新的待处理数据从本地导入到field_data中
-2 进入code_ocr文件夹
-3 运行 ./eval.sh
-4 code and data location:
-url:192.168.20.250
-directory:/data/liudan/ocr
+# FOT OCR Model Deployment Project
+
+This project involves the deployment of an FOTS model for OCR (Optical Character Recognition) on-site data collected from digital meters. The pipeline includes preprocessing the collected OCR image data, fine-tuning the FOTS model, and evaluating the model performance. This repository includes code for data preprocessing, training, and model evaluation.
+
+## Project Steps
+
+1. **Data Import**: Import the new data to be processed into the `field_data` directory.
+2. **Navigate to OCR Code**: Enter the `code_ocr` folder.
+3. **Run Evaluation**: Execute the evaluation script by running:
+    ```bash
+    ./eval.sh
+    ```
+
+## Code and Data Location
+
+- **Server URL**: `192.168.20.250`
+- **Directory**: `/data/liudan/ocr`
+
+## Features
+- **Data Preprocessing**: Scripts to preprocess OCR images before feeding into the model.
+- **Model Training**: Code to fine-tune the FOTS model with the new data.
+- **Model Evaluation**: Scripts to assess the model's performance after fine-tuning.
+
+## Contact
+For any inquiries, please contact the project team.
+