123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
- Usage:
- import torch
- model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
- model = torch.hub.load('ultralytics/yolov5:master', 'custom', 'path/to/yolov5s.onnx') # file from branch
- """
- import torch
- def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- """Creates or loads a YOLOv5 model
- Arguments:
- name (str): model name 'yolov5s' or path 'path/to/best.pt'
- pretrained (bool): load pretrained weights into the model
- channels (int): number of input channels
- classes (int): number of model classes
- autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
- verbose (bool): print all information to screen
- device (str, torch.device, None): device to use for model parameters
- Returns:
- YOLOv5 model
- """
- from pathlib import Path
- from models.common import AutoShape, DetectMultiBackend
- from models.yolo import Model
- from utils.downloads import attempt_download
- from utils.general import LOGGER, check_requirements, intersect_dicts, logging
- from utils.torch_utils import select_device
- if not verbose:
- LOGGER.setLevel(logging.WARNING)
- check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
- name = Path(name)
- path = name.with_suffix('.pt') if name.suffix == '' else name # checkpoint path
- try:
- device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
- if pretrained and channels == 3 and classes == 80:
- model = DetectMultiBackend(path, device=device) # download/load FP32 model
- # model = models.experimental.attempt_load(path, map_location=device) # download/load FP32 model
- else:
- cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
- model = Model(cfg, channels, classes) # create model
- if pretrained:
- ckpt = torch.load(attempt_download(path), map_location=device) # load
- csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
- csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
- model.load_state_dict(csd, strict=False) # load
- if len(ckpt['model'].names) == classes:
- model.names = ckpt['model'].names # set class names attribute
- if autoshape:
- model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
- return model.to(device)
- except Exception as e:
- help_url = 'https://github.com/ultralytics/yolov5/issues/36'
- s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
- raise Exception(s) from e
- def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
- # YOLOv5 custom or local model
- return _create(path, autoshape=autoshape, verbose=verbose, device=device)
- def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-nano model https://github.com/ultralytics/yolov5
- return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-small model https://github.com/ultralytics/yolov5
- return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-medium model https://github.com/ultralytics/yolov5
- return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-large model https://github.com/ultralytics/yolov5
- return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
- return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
- return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
- return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
- return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
- return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
- def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
- return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
- if __name__ == '__main__':
- model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
- # model = custom(path='path/to/model.pt') # custom
- # Verify inference
- from pathlib import Path
- import numpy as np
- from PIL import Image
- from utils.general import cv2
- imgs = [
- 'data/images/zidane.jpg', # filename
- Path('data/images/zidane.jpg'), # Path
- 'https://ultralytics.com/images/zidane.jpg', # URI
- cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
- Image.open('data/images/bus.jpg'), # PIL
- np.zeros((320, 640, 3))] # numpy
- results = model(imgs, size=320) # batched inference
- results.print()
- results.save()
|