plots.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Plotting utils
  4. """
  5. import math
  6. import os
  7. from copy import copy
  8. from pathlib import Path
  9. from urllib.error import URLError
  10. import cv2
  11. import matplotlib
  12. import matplotlib.pyplot as plt
  13. import numpy as np
  14. import pandas as pd
  15. import seaborn as sn
  16. import torch
  17. from PIL import Image, ImageDraw, ImageFont
  18. from utils.general import (CONFIG_DIR, FONT, LOGGER, Timeout, check_font, check_requirements, clip_coords,
  19. increment_path, is_ascii, try_except, xywh2xyxy, xyxy2xywh)
  20. from utils.metrics import fitness
  21. # Settings
  22. RANK = int(os.getenv('RANK', -1))
  23. matplotlib.rc('font', **{'size': 11})
  24. matplotlib.use('Agg') # for writing to files only
  25. class Colors:
  26. # Ultralytics color palette https://ultralytics.com/
  27. def __init__(self):
  28. # hex = matplotlib.colors.TABLEAU_COLORS.values()
  29. hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
  30. '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
  31. self.palette = [self.hex2rgb('#' + c) for c in hex]
  32. self.n = len(self.palette)
  33. def __call__(self, i, bgr=False):
  34. c = self.palette[int(i) % self.n]
  35. return (c[2], c[1], c[0]) if bgr else c
  36. @staticmethod
  37. def hex2rgb(h): # rgb order (PIL)
  38. return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
  39. colors = Colors() # create instance for 'from utils.plots import colors'
  40. def check_pil_font(font=FONT, size=10):
  41. # Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
  42. font = Path(font)
  43. font = font if font.exists() else (CONFIG_DIR / font.name)
  44. try:
  45. return ImageFont.truetype(str(font) if font.exists() else font.name, size)
  46. except Exception: # download if missing
  47. try:
  48. check_font(font)
  49. return ImageFont.truetype(str(font), size)
  50. except TypeError:
  51. check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374
  52. except URLError: # not online
  53. return ImageFont.load_default()
  54. class Annotator:
  55. if RANK in (-1, 0):
  56. check_pil_font() # download TTF if necessary
  57. # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
  58. def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
  59. assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
  60. non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
  61. self.pil = pil or non_ascii
  62. if self.pil: # use PIL
  63. self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
  64. self.draw = ImageDraw.Draw(self.im)
  65. self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
  66. size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
  67. else: # use cv2
  68. self.im = im
  69. self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
  70. def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
  71. # Add one xyxy box to image with label
  72. if self.pil or not is_ascii(label):
  73. self.draw.rectangle(box, width=self.lw, outline=color) # box
  74. if label:
  75. w, h = self.font.getsize(label) # text width, height
  76. outside = box[1] - h >= 0 # label fits outside box
  77. self.draw.rectangle(
  78. (box[0], box[1] - h if outside else box[1], box[0] + w + 1,
  79. box[1] + 1 if outside else box[1] + h + 1),
  80. fill=color,
  81. )
  82. # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
  83. self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
  84. else: # cv2
  85. p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
  86. cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
  87. if label:
  88. tf = max(self.lw - 1, 1) # font thickness
  89. w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
  90. outside = p1[1] - h - 3 >= 0 # label fits outside box
  91. p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
  92. cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
  93. cv2.putText(self.im,
  94. label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
  95. 0,
  96. self.lw / 3,
  97. txt_color,
  98. thickness=tf,
  99. lineType=cv2.LINE_AA)
  100. def rectangle(self, xy, fill=None, outline=None, width=1):
  101. # Add rectangle to image (PIL-only)
  102. self.draw.rectangle(xy, fill, outline, width)
  103. def text(self, xy, text, txt_color=(255, 255, 255)):
  104. # Add text to image (PIL-only)
  105. w, h = self.font.getsize(text) # text width, height
  106. self.draw.text((xy[0], xy[1] - h + 1), text, fill=txt_color, font=self.font)
  107. def result(self):
  108. # Return annotated image as array
  109. return np.asarray(self.im)
  110. def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
  111. """
  112. x: Features to be visualized
  113. module_type: Module type
  114. stage: Module stage within model
  115. n: Maximum number of feature maps to plot
  116. save_dir: Directory to save results
  117. """
  118. if 'Detect' not in module_type:
  119. batch, channels, height, width = x.shape # batch, channels, height, width
  120. if height > 1 and width > 1:
  121. f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
  122. blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
  123. n = min(n, channels) # number of plots
  124. fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
  125. ax = ax.ravel()
  126. plt.subplots_adjust(wspace=0.05, hspace=0.05)
  127. for i in range(n):
  128. ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
  129. ax[i].axis('off')
  130. LOGGER.info(f'Saving {f}... ({n}/{channels})')
  131. plt.savefig(f, dpi=300, bbox_inches='tight')
  132. plt.close()
  133. np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save
  134. def hist2d(x, y, n=100):
  135. # 2d histogram used in labels.png and evolve.png
  136. xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
  137. hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
  138. xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
  139. yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
  140. return np.log(hist[xidx, yidx])
  141. def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
  142. from scipy.signal import butter, filtfilt
  143. # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
  144. def butter_lowpass(cutoff, fs, order):
  145. nyq = 0.5 * fs
  146. normal_cutoff = cutoff / nyq
  147. return butter(order, normal_cutoff, btype='low', analog=False)
  148. b, a = butter_lowpass(cutoff, fs, order=order)
  149. return filtfilt(b, a, data) # forward-backward filter
  150. def output_to_target(output):
  151. # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
  152. targets = []
  153. for i, o in enumerate(output):
  154. for *box, conf, cls in o.cpu().numpy():
  155. targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
  156. return np.array(targets)
  157. def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16):
  158. # Plot image grid with labels
  159. if isinstance(images, torch.Tensor):
  160. images = images.cpu().float().numpy()
  161. if isinstance(targets, torch.Tensor):
  162. targets = targets.cpu().numpy()
  163. if np.max(images[0]) <= 1:
  164. images *= 255 # de-normalise (optional)
  165. bs, _, h, w = images.shape # batch size, _, height, width
  166. bs = min(bs, max_subplots) # limit plot images
  167. ns = np.ceil(bs ** 0.5) # number of subplots (square)
  168. # Build Image
  169. mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
  170. for i, im in enumerate(images):
  171. if i == max_subplots: # if last batch has fewer images than we expect
  172. break
  173. x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
  174. im = im.transpose(1, 2, 0)
  175. mosaic[y:y + h, x:x + w, :] = im
  176. # Resize (optional)
  177. scale = max_size / ns / max(h, w)
  178. if scale < 1:
  179. h = math.ceil(scale * h)
  180. w = math.ceil(scale * w)
  181. mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
  182. # Annotate
  183. fs = int((h + w) * ns * 0.01) # font size
  184. annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
  185. for i in range(i + 1):
  186. x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
  187. annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
  188. if paths:
  189. annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
  190. if len(targets) > 0:
  191. ti = targets[targets[:, 0] == i] # image targets
  192. boxes = xywh2xyxy(ti[:, 2:6]).T
  193. classes = ti[:, 1].astype('int')
  194. labels = ti.shape[1] == 6 # labels if no conf column
  195. conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
  196. if boxes.shape[1]:
  197. if boxes.max() <= 1.01: # if normalized with tolerance 0.01
  198. boxes[[0, 2]] *= w # scale to pixels
  199. boxes[[1, 3]] *= h
  200. elif scale < 1: # absolute coords need scale if image scales
  201. boxes *= scale
  202. boxes[[0, 2]] += x
  203. boxes[[1, 3]] += y
  204. for j, box in enumerate(boxes.T.tolist()):
  205. cls = classes[j]
  206. color = colors(cls)
  207. cls = names[cls] if names else cls
  208. if labels or conf[j] > 0.25: # 0.25 conf thresh
  209. label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
  210. annotator.box_label(box, label, color=color)
  211. annotator.im.save(fname) # save
  212. def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
  213. # Plot LR simulating training for full epochs
  214. optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
  215. y = []
  216. for _ in range(epochs):
  217. scheduler.step()
  218. y.append(optimizer.param_groups[0]['lr'])
  219. plt.plot(y, '.-', label='LR')
  220. plt.xlabel('epoch')
  221. plt.ylabel('LR')
  222. plt.grid()
  223. plt.xlim(0, epochs)
  224. plt.ylim(0)
  225. plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
  226. plt.close()
  227. def plot_val_txt(): # from utils.plots import *; plot_val()
  228. # Plot val.txt histograms
  229. x = np.loadtxt('val.txt', dtype=np.float32)
  230. box = xyxy2xywh(x[:, :4])
  231. cx, cy = box[:, 0], box[:, 1]
  232. fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
  233. ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
  234. ax.set_aspect('equal')
  235. plt.savefig('hist2d.png', dpi=300)
  236. fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
  237. ax[0].hist(cx, bins=600)
  238. ax[1].hist(cy, bins=600)
  239. plt.savefig('hist1d.png', dpi=200)
  240. def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
  241. # Plot targets.txt histograms
  242. x = np.loadtxt('targets.txt', dtype=np.float32).T
  243. s = ['x targets', 'y targets', 'width targets', 'height targets']
  244. fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
  245. ax = ax.ravel()
  246. for i in range(4):
  247. ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
  248. ax[i].legend()
  249. ax[i].set_title(s[i])
  250. plt.savefig('targets.jpg', dpi=200)
  251. def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study()
  252. # Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
  253. save_dir = Path(file).parent if file else Path(dir)
  254. plot2 = False # plot additional results
  255. if plot2:
  256. ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
  257. fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
  258. # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
  259. for f in sorted(save_dir.glob('study*.txt')):
  260. y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
  261. x = np.arange(y.shape[1]) if x is None else np.array(x)
  262. if plot2:
  263. s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
  264. for i in range(7):
  265. ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
  266. ax[i].set_title(s[i])
  267. j = y[3].argmax() + 1
  268. ax2.plot(y[5, 1:j],
  269. y[3, 1:j] * 1E2,
  270. '.-',
  271. linewidth=2,
  272. markersize=8,
  273. label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
  274. ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
  275. 'k.-',
  276. linewidth=2,
  277. markersize=8,
  278. alpha=.25,
  279. label='EfficientDet')
  280. ax2.grid(alpha=0.2)
  281. ax2.set_yticks(np.arange(20, 60, 5))
  282. ax2.set_xlim(0, 57)
  283. ax2.set_ylim(25, 55)
  284. ax2.set_xlabel('GPU Speed (ms/img)')
  285. ax2.set_ylabel('COCO AP val')
  286. ax2.legend(loc='lower right')
  287. f = save_dir / 'study.png'
  288. print(f'Saving {f}...')
  289. plt.savefig(f, dpi=300)
  290. @try_except # known issue https://github.com/ultralytics/yolov5/issues/5395
  291. @Timeout(30) # known issue https://github.com/ultralytics/yolov5/issues/5611
  292. def plot_labels(labels, names=(), save_dir=Path('')):
  293. # plot dataset labels
  294. LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
  295. c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
  296. nc = int(c.max() + 1) # number of classes
  297. x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
  298. # seaborn correlogram
  299. sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
  300. plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
  301. plt.close()
  302. # matplotlib labels
  303. matplotlib.use('svg') # faster
  304. ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
  305. y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
  306. try: # color histogram bars by class
  307. [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
  308. except Exception:
  309. pass
  310. ax[0].set_ylabel('instances')
  311. if 0 < len(names) < 30:
  312. ax[0].set_xticks(range(len(names)))
  313. ax[0].set_xticklabels(names, rotation=90, fontsize=10)
  314. else:
  315. ax[0].set_xlabel('classes')
  316. sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
  317. sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
  318. # rectangles
  319. labels[:, 1:3] = 0.5 # center
  320. labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
  321. img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
  322. for cls, *box in labels[:1000]:
  323. ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
  324. ax[1].imshow(img)
  325. ax[1].axis('off')
  326. for a in [0, 1, 2, 3]:
  327. for s in ['top', 'right', 'left', 'bottom']:
  328. ax[a].spines[s].set_visible(False)
  329. plt.savefig(save_dir / 'labels.jpg', dpi=200)
  330. matplotlib.use('Agg')
  331. plt.close()
  332. def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve()
  333. # Plot evolve.csv hyp evolution results
  334. evolve_csv = Path(evolve_csv)
  335. data = pd.read_csv(evolve_csv)
  336. keys = [x.strip() for x in data.columns]
  337. x = data.values
  338. f = fitness(x)
  339. j = np.argmax(f) # max fitness index
  340. plt.figure(figsize=(10, 12), tight_layout=True)
  341. matplotlib.rc('font', **{'size': 8})
  342. print(f'Best results from row {j} of {evolve_csv}:')
  343. for i, k in enumerate(keys[7:]):
  344. v = x[:, 7 + i]
  345. mu = v[j] # best single result
  346. plt.subplot(6, 5, i + 1)
  347. plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
  348. plt.plot(mu, f.max(), 'k+', markersize=15)
  349. plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters
  350. if i % 5 != 0:
  351. plt.yticks([])
  352. print(f'{k:>15}: {mu:.3g}')
  353. f = evolve_csv.with_suffix('.png') # filename
  354. plt.savefig(f, dpi=200)
  355. plt.close()
  356. print(f'Saved {f}')
  357. def plot_results(file='path/to/results.csv', dir=''):
  358. # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
  359. save_dir = Path(file).parent if file else Path(dir)
  360. fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
  361. ax = ax.ravel()
  362. files = list(save_dir.glob('results*.csv'))
  363. assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
  364. for fi, f in enumerate(files):
  365. try:
  366. data = pd.read_csv(f)
  367. s = [x.strip() for x in data.columns]
  368. x = data.values[:, 0]
  369. for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
  370. y = data.values[:, j]
  371. # y[y == 0] = np.nan # don't show zero values
  372. ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
  373. ax[i].set_title(s[j], fontsize=12)
  374. # if j in [8, 9, 10]: # share train and val loss y axes
  375. # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
  376. except Exception as e:
  377. LOGGER.info(f'Warning: Plotting error for {f}: {e}')
  378. ax[1].legend()
  379. fig.savefig(save_dir / 'results.png', dpi=200)
  380. plt.close()
  381. def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
  382. # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
  383. ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
  384. s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
  385. files = list(Path(save_dir).glob('frames*.txt'))
  386. for fi, f in enumerate(files):
  387. try:
  388. results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
  389. n = results.shape[1] # number of rows
  390. x = np.arange(start, min(stop, n) if stop else n)
  391. results = results[:, x]
  392. t = (results[0] - results[0].min()) # set t0=0s
  393. results[0] = x
  394. for i, a in enumerate(ax):
  395. if i < len(results):
  396. label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
  397. a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
  398. a.set_title(s[i])
  399. a.set_xlabel('time (s)')
  400. # if fi == len(files) - 1:
  401. # a.set_ylim(bottom=0)
  402. for side in ['top', 'right']:
  403. a.spines[side].set_visible(False)
  404. else:
  405. a.remove()
  406. except Exception as e:
  407. print(f'Warning: Plotting error for {f}; {e}')
  408. ax[1].legend()
  409. plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
  410. def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
  411. # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
  412. xyxy = torch.tensor(xyxy).view(-1, 4)
  413. b = xyxy2xywh(xyxy) # boxes
  414. if square:
  415. b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
  416. b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
  417. xyxy = xywh2xyxy(b).long()
  418. clip_coords(xyxy, im.shape)
  419. crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
  420. if save:
  421. file.parent.mkdir(parents=True, exist_ok=True) # make directory
  422. f = str(increment_path(file).with_suffix('.jpg'))
  423. # cv2.imwrite(f, crop) # https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
  424. Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)).save(f, quality=95, subsampling=0)
  425. return crop