123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Image augmentation functions
- """
- import math
- import random
- import cv2
- import numpy as np
- from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box
- from utils.metrics import bbox_ioa
- class Albumentations:
- # YOLOv5 Albumentations class (optional, only used if package is installed)
- def __init__(self):
- self.transform = None
- try:
- import albumentations as A
- check_version(A.__version__, '1.0.3', hard=True) # version requirement
- T = [
- A.Blur(p=0.01),
- A.MedianBlur(p=0.01),
- A.ToGray(p=0.01),
- A.CLAHE(p=0.01),
- A.RandomBrightnessContrast(p=0.0),
- A.RandomGamma(p=0.0),
- A.ImageCompression(quality_lower=75, p=0.0)] # transforms
- self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
- LOGGER.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
- except ImportError: # package not installed, skip
- pass
- except Exception as e:
- LOGGER.info(colorstr('albumentations: ') + f'{e}')
- def __call__(self, im, labels, p=1.0):
- if self.transform and random.random() < p:
- new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
- im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
- return im, labels
- def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
- # HSV color-space augmentation
- if hgain or sgain or vgain:
- r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
- hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
- dtype = im.dtype # uint8
- x = np.arange(0, 256, dtype=r.dtype)
- lut_hue = ((x * r[0]) % 180).astype(dtype)
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
- im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
- cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
- def hist_equalize(im, clahe=True, bgr=False):
- # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
- yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
- if clahe:
- c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
- yuv[:, :, 0] = c.apply(yuv[:, :, 0])
- else:
- yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
- return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
- def replicate(im, labels):
- # Replicate labels
- h, w = im.shape[:2]
- boxes = labels[:, 1:].astype(int)
- x1, y1, x2, y2 = boxes.T
- s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
- for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
- x1b, y1b, x2b, y2b = boxes[i]
- bh, bw = y2b - y1b, x2b - x1b
- yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
- x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
- im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
- labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
- return im, labels
- def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): #图像的自适应填充和缩放
- # Resize and pad image while meeting stride-multiple constraints
- shape = im.shape[:2] # current shape [height, width] 切片操作,只取宽高
- if isinstance(new_shape, int):
- new_shape = (new_shape, new_shape)
- # Scale ratio (new / old) 计算最小缩放因子
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
- if not scaleup: # only scale down, do not scale up (for better val mAP)
- r = min(r, 1.0)
- # Compute padding
- ratio = r, r # width, height ratios 缩放比例
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) #计算出图片未填充时的缩放大小
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding 计算需要填充的像素
- if auto: # minimum rectangle 获取最小的矩形填充
- dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
- elif scaleFill: # stretch 如果scaleFill=True,则不进行填充,直接resize成img_size,任由图片进行拉伸和压缩。
- dw, dh = 0.0, 0.0
- new_unpad = (new_shape[1], new_shape[0])
- ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
- dw /= 2 # divide padding into 2 sides 计算填充大小
- dh /= 2
- if shape[::-1] != new_unpad: # resize
- im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) # 缩放图片
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
- im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border 填充图片
- return im, ratio, (dw, dh)
- def random_perspective(im,
- targets=(),
- segments=(),
- degrees=10,
- translate=.1,
- scale=.1,
- shear=10,
- perspective=0.0,
- border=(0, 0)): #随机透视变换 计算方法为坐标向量和变换矩阵的乘积
- # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
- # targets = [cls, xyxy]
- height = im.shape[0] + border[0] * 2 # shape(h,w,c)
- width = im.shape[1] + border[1] * 2
- # Center
- C = np.eye(3) # 3*3单位矩阵
- C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
- C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
- # Perspective 透视变换
- P = np.eye(3)
- P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
- P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
- # Rotation and Scale 设置旋转和缩放的仿射矩阵
- R = np.eye(3)
- a = random.uniform(-degrees, degrees) # 旋转角度
- # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
- s = random.uniform(1 - scale, 1 + scale) # 缩放
- # s = 2 ** random.uniform(-scale, scale)
- R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
- # Shear 设置裁剪的仿射矩阵系数
- S = np.eye(3)
- S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
- S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
- # Translation 设置平移的仿射矩阵系数
- T = np.eye(3)
- T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
- T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
- # Combined rotation matrix 融合仿射矩阵并作用在图片上
- M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
- if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
- if perspective:
- im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114)) # 透视变换函数,可保持直线不变形,但是平行线可能不再平行
- else: # affine
- im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) # 仿射变换函数,可实现旋转,平移,缩放;变换后的平行线依旧平行。
- # Visualize
- # import matplotlib.pyplot as plt
- # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
- # ax[0].imshow(im[:, :, ::-1]) # base
- # ax[1].imshow(im2[:, :, ::-1]) # warped
- # Transform label coordinates 调整标签框信息
- n = len(targets)
- if n:
- use_segments = any(x.any() for x in segments)
- new = np.zeros((n, 4))
- if use_segments: # warp segments
- segments = resample_segments(segments) # upsample
- for i, segment in enumerate(segments):
- xy = np.ones((len(segment), 3))
- xy[:, :2] = segment
- xy = xy @ M.T # transform
- xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
- # clip
- new[i] = segment2box(xy, width, height)
- else: # warp boxes
- xy = np.ones((n * 4, 3))
- xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
- xy = xy @ M.T # transform
- xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
- # create new boxes
- x = xy[:, [0, 2, 4, 6]]
- y = xy[:, [1, 3, 5, 7]]
- new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
- # clip 去除尽心上面一系列操作后被裁剪过小的框。
- new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
- new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
- # filter candidates 筛选目标框
- i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
- targets = targets[i]
- targets[:, 1:5] = new[i]
- return im, targets
- def copy_paste(im, labels, segments, p=0.5):
- # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
- n = len(segments)
- if p and n:
- h, w, c = im.shape # height, width, channels
- im_new = np.zeros(im.shape, np.uint8)
- for j in random.sample(range(n), k=round(p * n)):
- l, s = labels[j], segments[j]
- box = w - l[3], l[2], w - l[1], l[4]
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
- if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
- labels = np.concatenate((labels, [[l[0], *box]]), 0)
- segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
- cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
- result = cv2.bitwise_and(src1=im, src2=im_new)
- result = cv2.flip(result, 1) # augment segments (flip left-right)
- i = result > 0 # pixels to replace
- # i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
- im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
- return im, labels, segments
- # cutout数据增强
- def cutout(im, labels, p=0.5):
- # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
- if random.random() < p:
- h, w = im.shape[:2]
- scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
- for s in scales:
- mask_h = random.randint(1, int(h * s)) # create random masks
- mask_w = random.randint(1, int(w * s))
- # box
- xmin = max(0, random.randint(0, w) - mask_w // 2)
- ymin = max(0, random.randint(0, h) - mask_h // 2)
- xmax = min(w, xmin + mask_w)
- ymax = min(h, ymin + mask_h)
- # apply random color mask
- im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] # 用随机颜色去填充上面的随机mask框
- # return unobscured labels
- if len(labels) and s > 0.03:
- box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
- ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
- labels = labels[ioa < 0.60] # remove >60% obscured labels
- return labels
- def mixup(im, labels, im2, labels2):
- # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
- r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
- im = (im * r + im2 * (1 - r)).astype(np.uint8)
- labels = np.concatenate((labels, labels2), 0)
- return im, labels
- def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
- # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
- w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
- w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
- ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
- return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|