yolo.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. YOLO-specific modules
  4. Usage:
  5. $ python path/to/models/yolo.py --cfg yolov5s.yaml
  6. """
  7. import argparse
  8. import os
  9. import platform
  10. import sys
  11. from copy import deepcopy
  12. from pathlib import Path
  13. FILE = Path(__file__).resolve()
  14. ROOT = FILE.parents[1] # YOLOv5 root directory
  15. if str(ROOT) not in sys.path:
  16. sys.path.append(str(ROOT)) # add ROOT to PATH
  17. if platform.system() != 'Windows':
  18. ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
  19. from models.common import *
  20. from models.experimental import *
  21. from utils.autoanchor import check_anchor_order
  22. from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
  23. from utils.plots import feature_visualization
  24. from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
  25. time_sync)
  26. try:
  27. import thop # for FLOPs computation
  28. except ImportError:
  29. thop = None
  30. class Detect(nn.Module):
  31. """Detect模块是用来构建Detect层的,将输入feature map 通过一个卷积操作和公式计算到我们想要的shape, 为后面的计算损失或者NMS作准备"""
  32. stride = None # strides computed during build
  33. onnx_dynamic = False # ONNX export parameter
  34. export = False # export mode
  35. def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
  36. super().__init__()
  37. self.nc = nc # number of classes
  38. self.no = nc + 5 # number of outputs per anchor nc为类别数目,5为四个坐标信息+一个类别信息
  39. self.nl = len(anchors) # number of detection layers
  40. self.na = len(anchors[0]) // 2 # number of anchors
  41. self.grid = [torch.zeros(1)] * self.nl # init grid
  42. self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
  43. self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
  44. self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
  45. self.inplace = inplace # use in-place ops (e.g. slice assignment)
  46. def forward(self, x):
  47. z = [] # inference output
  48. for i in range(self.nl):
  49. x[i] = self.m[i](x[i]) # conv
  50. if self.export:
  51. continue
  52. bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
  53. x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
  54. if not self.training: # inference
  55. if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
  56. self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
  57. y = x[i].sigmoid()
  58. if self.inplace:
  59. y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i] # xy
  60. y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
  61. else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
  62. xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
  63. xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
  64. wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
  65. y = torch.cat((xy, wh, conf), 4)
  66. z.append(y.view(bs, -1, self.no)) # 预测框坐标信息
  67. if self.export:
  68. return x
  69. return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x) # 预测框坐标, object, cls
  70. def _make_grid(self, nx=20, ny=20, i=0): # 划分单元网格函数
  71. d = self.anchors[i].device
  72. t = self.anchors[i].dtype
  73. shape = 1, self.na, ny, nx, 2 # grid shape
  74. y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
  75. if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
  76. yv, xv = torch.meshgrid(y, x, indexing='ij')
  77. else:
  78. yv, xv = torch.meshgrid(y, x)
  79. grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
  80. anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
  81. return grid, anchor_grid
  82. class Model(nn.Module):
  83. """
  84. 这个模块是整个模型的搭建模块。这个模块的功能很全,不光包含模型的搭建,
  85. 还扩展了很多功能如:特征可视化,打印模型信息、TTA推理增强、融合Conv+Bn加速推理、模型搭载nms功能、
  86. autoshape函数:模型包含前处理、推理、后处理的模块(预处理 + 推理 + nms)
  87. :params cfg:模型配置文件
  88. :params ch: input img channels 一般是3 RGB文件
  89. :params nc: number of classes 数据集的类别个数
  90. :anchors: 一般是None
  91. """
  92. # YOLOv5 modelnms
  93. def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
  94. super().__init__()
  95. if isinstance(cfg, dict):
  96. self.yaml = cfg # model dict
  97. else: # is *.yaml
  98. import yaml # for torch hub
  99. self.yaml_file = Path(cfg).name
  100. with open(cfg, encoding='ascii', errors='ignore') as f:
  101. self.yaml = yaml.safe_load(f) # model dict
  102. # Define model
  103. ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
  104. if nc and nc != self.yaml['nc']:
  105. LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
  106. self.yaml['nc'] = nc # override yaml value
  107. if anchors:
  108. LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
  109. self.yaml['anchors'] = round(anchors) # override yaml value
  110. self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
  111. self.names = [str(i) for i in range(self.yaml['nc'])] # default names
  112. self.inplace = self.yaml.get('inplace', True)
  113. # Build strides, anchors
  114. m = self.model[-1] # Detect()
  115. if isinstance(m, Detect):
  116. s = 256 # 2x min stride
  117. m.inplace = self.inplace
  118. m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward m.stride = [8, 16, 32]
  119. check_anchor_order(m) # must be in pixel-space (not grid-space) 检查anchor顺序和stride顺序是否一致
  120. m.anchors /= m.stride.view(-1, 1, 1) # anchor大小计算,
  121. self.stride = m.stride
  122. self._initialize_biases() # only run once
  123. # Init weights, biases
  124. initialize_weights(self) # 初始化权重
  125. self.info()
  126. LOGGER.info('')
  127. def forward(self, x, augment=False, profile=False, visualize=False):
  128. if augment: # 是否进行TTA (测试时的数据增强)
  129. return self._forward_augment(x) # augmented inference, None
  130. return self._forward_once(x, profile, visualize) # single-scale inference, train 直接进行训练
  131. def _forward_augment(self, x):
  132. img_size = x.shape[-2:] # height, width
  133. s = [1, 0.83, 0.67] # scales
  134. f = [None, 3, None] # flips (2-ud, 3-lr)
  135. y = [] # outputs
  136. for si, fi in zip(s, f):
  137. xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) # 改变图像尺寸大小
  138. yi = self._forward_once(xi)[0] # forward
  139. # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
  140. yi = self._descale_pred(yi, fi, si, img_size) # 将翻转后的图像重新变回来(翻转的逆操作)
  141. y.append(yi)
  142. y = self._clip_augmented(y) # clip augmented tails
  143. return torch.cat(y, 1), None # augmented inference, train
  144. def _forward_once(self, x, profile=False, visualize=False):
  145. y, dt = [], [] # outputs
  146. for m in self.model:
  147. if m.f != -1: # if not from previous layer
  148. x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
  149. if profile:
  150. self._profile_one_layer(m, x, dt) #计算一层网络
  151. x = m(x) # run 执行网格组件操作
  152. y.append(x if m.i in self.save else None) # save output 保存输出结果
  153. if visualize:
  154. feature_visualization(x, m.type, m.i, save_dir=visualize)
  155. return x
  156. def _descale_pred(self, p, flips, scale, img_size):
  157. # de-scale predictions following augmented inference (inverse operation)
  158. if self.inplace:
  159. p[..., :4] /= scale # de-scale
  160. if flips == 2:
  161. p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
  162. elif flips == 3:
  163. p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
  164. else:
  165. x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
  166. if flips == 2:
  167. y = img_size[0] - y # de-flip ud
  168. elif flips == 3:
  169. x = img_size[1] - x # de-flip lr
  170. p = torch.cat((x, y, wh, p[..., 4:]), -1)
  171. return p
  172. def _clip_augmented(self, y):
  173. # Clip YOLOv5 augmented inference tails
  174. nl = self.model[-1].nl # number of detection layers (P3-P5)
  175. g = sum(4 ** x for x in range(nl)) # grid points
  176. e = 1 # exclude layer count
  177. i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
  178. y[0] = y[0][:, :-i] # large
  179. i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
  180. y[-1] = y[-1][:, i:] # small
  181. return y
  182. def _profile_one_layer(self, m, x, dt):
  183. c = isinstance(m, Detect) # is final layer, copy input as inplace fix
  184. o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs #估算pytorch模型的FLOPs
  185. t = time_sync()
  186. for _ in range(10):
  187. m(x.copy() if c else x)
  188. dt.append((time_sync() - t) * 100)
  189. if m == self.model[0]:
  190. LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")
  191. LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
  192. if c:
  193. LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
  194. def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency 初始化
  195. # https://arxiv.org/abs/1708.02002 section 3.3
  196. # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
  197. m = self.model[-1] # Detect() module
  198. for mi, s in zip(m.m, m.stride): # from
  199. b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
  200. b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
  201. b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls
  202. mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  203. def _print_biases(self):
  204. m = self.model[-1] # Detect() module
  205. for mi in m.m: # from
  206. b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
  207. LOGGER.info(
  208. ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
  209. # def _print_weights(self):
  210. # for m in self.model.modules():
  211. # if type(m) is Bottleneck:
  212. # LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
  213. def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers 融合
  214. LOGGER.info('Fusing layers... ')
  215. for m in self.model.modules():
  216. if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
  217. m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
  218. delattr(m, 'bn') # remove batchnorm
  219. m.forward = m.forward_fuse # update forward
  220. self.info()
  221. return self
  222. def info(self, verbose=False, img_size=640): # print model information
  223. model_info(self, verbose, img_size)
  224. def _apply(self, fn):
  225. # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
  226. self = super()._apply(fn)
  227. m = self.model[-1] # Detect()
  228. if isinstance(m, Detect):
  229. m.stride = fn(m.stride)
  230. m.grid = list(map(fn, m.grid))
  231. if isinstance(m.anchor_grid, list):
  232. m.anchor_grid = list(map(fn, m.anchor_grid))
  233. return self
  234. def parse_model(d, ch): # model_dict, input_channels(3)
  235. """用在上面Model模块中
  236. 解析模型文件(字典形式),并搭建网络结构
  237. 这个函数其实主要做的就是: 更新当前层的args(参数),计算c2(当前层的输出channel) =>
  238. 使用当前层的参数搭建当前层 =>
  239. 生成 layers + save
  240. :params d: model_dict 模型文件 字典形式 {dict:7} yolov5s.yaml中的6个元素 + ch
  241. :params ch: 记录模型每一层的输出channel 初始ch=[3] 后面会删除
  242. :return nn.Sequential(*layers): 网络的每一层的层结构
  243. :return sorted(save): 把所有层结构中from不是-1的值记下 并排序 [4, 6, 10, 14, 17, 20, 23]
  244. """
  245. LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
  246. anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] #将模型结构的depth_multiple, width_multiple提取出来,赋值给gd, gw
  247. na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
  248. no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
  249. layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
  250. for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
  251. m = eval(m) if isinstance(m, str) else m # eval strings
  252. for j, a in enumerate(args):
  253. try:
  254. args[j] = eval(a) if isinstance(a, str) else a # eval strings
  255. except NameError:
  256. pass
  257. n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain #控制深度
  258. if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
  259. BottleneckCSP, C3, C3TR, C3SPP, C3Ghost):
  260. c1, c2 = ch[f], args[0]
  261. if c2 != no: # if not output
  262. c2 = make_divisible(c2 * gw, 8) #控制宽度(卷积核个数)的代码
  263. args = [c1, c2, *args[1:]]
  264. if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
  265. args.insert(2, n) # number of repeats
  266. n = 1
  267. elif m is nn.BatchNorm2d:
  268. args = [ch[f]]
  269. elif m is Concat:
  270. c2 = sum(ch[x] for x in f)
  271. elif m is Detect:
  272. args.append([ch[x] for x in f])
  273. if isinstance(args[1], int): # number of anchors
  274. args[1] = [list(range(args[1] * 2))] * len(f)
  275. elif m is Contract:
  276. c2 = ch[f] * args[0] ** 2
  277. elif m is Expand:
  278. c2 = ch[f] // args[0] ** 2
  279. else:
  280. c2 = ch[f]
  281. m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
  282. t = str(m)[8:-2].replace('__main__.', '') # module type 显示模型的名称
  283. np = sum(x.numel() for x in m_.parameters()) # number params 这一层的参数数量
  284. m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
  285. LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
  286. save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
  287. layers.append(m_)
  288. if i == 0:
  289. ch = []
  290. ch.append(c2)
  291. return nn.Sequential(*layers), sorted(save)
  292. if __name__ == '__main__':
  293. parser = argparse.ArgumentParser()
  294. parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
  295. parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
  296. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  297. parser.add_argument('--profile', action='store_true', help='profile model speed')
  298. parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
  299. parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
  300. opt = parser.parse_args()
  301. opt.cfg = check_yaml(opt.cfg) # check YAML
  302. print_args(vars(opt))
  303. device = select_device(opt.device)
  304. # Create model
  305. im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
  306. model = Model(opt.cfg).to(device)
  307. # Options
  308. if opt.line_profile: # profile layer by layer
  309. _ = model(im, profile=True)
  310. elif opt.profile: # profile forward-backward
  311. results = profile(input=im, ops=[model], n=3)
  312. elif opt.test: # test all models
  313. for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
  314. try:
  315. _ = Model(cfg)
  316. except Exception as e:
  317. print(f'Error in {cfg}: {e}')