123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Validate a trained YOLOv5 model accuracy on a custom dataset
- Usage:
- $ python path/to/val.py --weights yolov5s.pt --data coco128.yaml --img 640
- Usage - formats:
- $ python path/to/val.py --weights yolov5s.pt # PyTorch
- yolov5s.torchscript # TorchScript
- yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
- yolov5s.xml # OpenVINO
- yolov5s.engine # TensorRT
- yolov5s.mlmodel # CoreML (macOS-only)
- yolov5s_saved_model # TensorFlow SavedModel
- yolov5s.pb # TensorFlow GraphDef
- yolov5s.tflite # TensorFlow Lite
- yolov5s_edgetpu.tflite # TensorFlow Edge TPU
- """
- import argparse
- import json
- import os
- import sys
- from pathlib import Path
- from threading import Thread
- import numpy as np
- import torch
- from tqdm.auto import tqdm
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- from models.common import DetectMultiBackend
- from utils.callbacks import Callbacks
- from utils.datasets import create_dataloader
- from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_yaml,
- coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
- scale_coords, xywh2xyxy, xyxy2xywh)
- from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
- from utils.plots import output_to_target, plot_images, plot_val_study
- from utils.torch_utils import select_device, time_sync
- def save_one_txt(predn, save_conf, shape, file):
- # Save one txt result
- gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
- for *xyxy, conf, cls in predn.tolist():
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
- line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
- with open(file, 'a') as f:
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
- def save_one_json(predn, jdict, path, class_map):
- # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
- image_id = int(path.stem) if path.stem.isnumeric() else path.stem
- box = xyxy2xywh(predn[:, :4]) # xywh
- box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
- for p, b in zip(predn.tolist(), box.tolist()):
- jdict.append({
- 'image_id': image_id,
- 'category_id': class_map[int(p[5])],
- 'bbox': [round(x, 3) for x in b],
- 'score': round(p[4], 5)})
- def process_batch(detections, labels, iouv):
- """
- Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
- Arguments:
- detections (Array[N, 6]), x1, y1, x2, y2, conf, class
- labels (Array[M, 5]), class, x1, y1, x2, y2
- Returns:
- correct (Array[N, 10]), for 10 IoU levels
- """
- correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
- iou = box_iou(labels[:, 1:], detections[:, :4])
- x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match
- if x[0].shape[0]:
- matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou]
- if x[0].shape[0] > 1:
- matches = matches[matches[:, 2].argsort()[::-1]]
- matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
- # matches = matches[matches[:, 2].argsort()[::-1]]
- matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
- matches = torch.from_numpy(matches).to(iouv.device)
- correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
- return correct
- @torch.no_grad()
- def run(
- data, # 数据集配置文件地址 包含数据集的路径、类别个数、类名、下载地址等信息
- weights=None, # model.pt path(s) 模型的权重文件地址
- batch_size=32, # batch size 前向传播的批次大小
- imgsz=640, # inference size (pixels) 输入网络的图片分辨率
- conf_thres=0.001, # confidence threshold object置信度阈值
- iou_thres=0.6, # NMS IoU threshold 进行NMS时IOU的阈值
- task='val', # train, val, test, speed or study 设置测试的类型 有train, val, test, speed or study几种
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu 测试的设备
- workers=8, # max dataloader workers (per RANK in DDP mode)
- single_cls=False, # treat as single-class dataset 数据集是否只用一个类别
- augment=False, # augmented inference 测试是否使用TTA Test Time Augment
- verbose=False, # verbose output 是否打印出每个类别的mAP
- save_txt=False, # save results to *.txt 是否以txt文件的形式保存模型预测框的坐标
- save_hybrid=False, # save label+prediction hybrid results to *.txt 是否保存
- save_conf=False, # save confidences in --save-txt labels 是否保存预测每个目标的置信度到预测tx文件中
- save_json=False, # save a COCO-JSON results file 是否按照coco的json格式保存预测框,并且使用cocoapi做评估
- project=ROOT / 'runs/val', # save to project/name 测试保存的源文件
- name='exp', # save to project/name 测试保存的文件地址
- exist_ok=False, # existing project/name ok, do not increment 是否存在当前文件
- half=True, # use FP16 half-precision inference 是否使用半精度推理
- dnn=False, # use OpenCV DNN for ONNX inference 是否使用Opencv DNN 进行 ONNX 推理
- model=None, # 模型
- dataloader=None, # 数据加载器
- save_dir=Path(''), # 文件保存路径
- plots=True,# 是否可视化
- callbacks=Callbacks(),
- compute_loss=None, # 损失函数
- ):
- # Initialize/load model and set device
- training = model is not None
- if training: # called by train.py
- # 判断是否是训练时调用run函数(执行train.py脚本), 如果是就使用训练时的设备 一般都是train
- device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
- half &= device.type != 'cpu' # half precision only supported on CUDA
- model.half() if half else model.float()
- else: # called directly
- # 如果不是train.py调用run函数(执行val.py脚本)就调用select_device选择可用的设备
- # 并生成save_dir + 加载模型model + 检查输入图片的尺寸 + 加载data配置信息
- device = select_device(device, batch_size=batch_size)
- # Directories 生成save_dir文件路径
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run 生成增量文件夹 runs/val/exp8
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
- # Load model 加载模型
- model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) #检测编译框架,根据不同的编译框架读取不同类型的权重文件 pytorch、tensorflow、tensorrt等
- stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
- imgsz = check_img_size(imgsz, s=stride) # check image size 检查输入图片的尺寸是否能被 stride(32) 整除,如果不能则调整图片大小后返回
- half = model.fp16 # FP16 supported on limited backends with CUDA
- if engine:
- batch_size = model.batch_size
- else:
- device = model.device
- if not (pt or jit):
- batch_size = 1 # export.py models default to batch-size 1
- LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
- # Data
- data = check_dataset(data) # check 下载或者解压数据集
- # Configure
- model.eval() #模型验证模式
- cuda = device.type != 'cpu'
- is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
- nc = 1 if single_cls else int(data['nc']) # number of classes
- # 计算mAP相关参数
- # 设置iou阈值 从0.5-0.95取10个(0.05间隔) iou vector for mAP@0.5:0.95
- # iouv: [0.50000, 0.55000, 0.60000, 0.65000, 0.70000, 0.75000, 0.80000, 0.85000, 0.90000, 0.95000]
- iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95 计算mAP相关参数分组,从0.5-0.95取10个
- niou = iouv.numel() # 统计mAP@0.5:0.95的分组数
- # 如果不是训练就调用create_dataloader生成dataloader
- # 如果是训练就不需要生成dataloader 可以直接从参数中传过来testloader
- # Dataloader
- if not training:
- if pt and not single_cls: # check --weights are trained on --data 检查权重和多标签预测是否为True
- ncm = model.model.nc
- assert ncm == nc, f'{weights[0]} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
- f'classes). Pass correct combination of --weights and --data that are trained together.'
- model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
- pad = 0.0 if task in ('speed', 'benchmark') else 0.5
- rect = False if task == 'benchmark' else pt # square inference for benchmarks
- task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
- # 创建dataloader 这里的rect默认为True 矩形推理用于测试集 在不影响mAP的情况下可以大大提升推理速度。
- dataloader = create_dataloader(data[task],
- imgsz,
- batch_size,
- stride,
- single_cls,
- pad=pad,
- rect=rect,
- workers=workers,
- prefix=colorstr(f'{task}: '))[0]
- seen = 0 # 初始化测试的图片数量
- confusion_matrix = ConfusionMatrix(nc=nc) # 初始化混淆矩阵
- names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} # 获取数据集所有的类别名称
- class_map = coco80_to_coco91_class() if is_coco else list(range(1000))# 获取coco数据集的类别索引,如果没有则range1000
- s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') #进度
- dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 # 初始化p, r, f1, mp, mr, map50, map指标和时间t0, t1, t2
- loss = torch.zeros(3, device=device)# 初始化测试集的损失
- jdict, stats, ap, ap_class = [], [], [], [] # 初始化json文件中的字典、统计信息、ap等
- callbacks.run('on_val_start')
- pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar 进度
- # 验证
- for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
- callbacks.run('on_val_batch_start')
- t1 = time_sync()
- if cuda:
- im = im.to(device, non_blocking=True)
- targets = targets.to(device)
- im = im.half() if half else im.float() # uint8 to fp16/32 是否使用半精度
- im /= 255 # 0 - 255 to 0.0 - 1.0
- nb, _, height, width = im.shape # batch size, channels, height, width
- t2 = time_sync()
- dt[0] += t2 - t1
- # Inference 向前推理
- """
- out: 推理结果 1个[bs, anchor_num*grid_w*grid_h, xywh+c+20class] = [1, (3*80*80)+(3*40*40)+(3*20*20), 25]
- train_out: 训练结果 3个[bs, anchor_num, grid_w, grid_h, xywh+c+20classes] = [1, 3, 80, 80, 25] [1, 3, 40, 40, 25] [1, 3, 20, 20, 25]
- """
- out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs
- dt[1] += time_sync() - t2 # 累计前向推理时间
- # Loss 计算验证集损失
- if compute_loss:
- loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
- # NMS 将真实框target的xywh(因为target是在labelimg中做了一个归一化)映射到img(test)尺寸
- targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
- # save_hybrid: adding the dataset labels to the model predictions before NMS
- # 是在NMS之前将数据集标签targets添加到模型预测中
- # 这允许在数据集中自动标记(for autolabelling)其他对象(在pred中混入gt) 并且mAP反映了新的混合标签
- # targets: [num_target, img_index+class_index+xywh] = [31, 6]
- # lb: {list: bs} 第一张图片的target[17, 5] 第二张[1, 5] 第三张[7, 5] 第四张[6, 5]
- lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
- t3 = time_sync()
- out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
- dt[2] += time_sync() - t3
- # Metrics 统计每张图片的真实框、预测框信息
- # 为每张图片做统计,写入预测信息到txt文件,生成json文件字典,统计tp等
- for si, pred in enumerate(out):
- # 统计每张图片的真实框、预测框信息;
- # 获取第si张图片的gt标签信息 包括class, x, y, w, h target[:, 0]为标签属于哪张图片的编号
- labels = targets[targets[:, 0] == si, 1:]# [:, class+xywh]
- nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
- path, shape = Path(paths[si]), shapes[si][0]
- correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
- seen += 1 # 统计测试图片数量 +1
- if npr == 0: # 如果预测为空,则添加空的信息到stats里
- if nl:
- stats.append((correct, *torch.zeros((3, 0), device=device)))
- continue
- # Predictions
- if single_cls:
- pred[:, 5] = 0
- predn = pred.clone()
- # 将预测坐标映射到原图img中
- scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
- # Evaluate 计算混淆矩阵 重点
- if nl:
- tbox = xywh2xyxy(labels[:, 1:5]) # target boxes 获取xyxy格式的框
- scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels 将预测框映射到原图img
- labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
- correct = process_batch(predn, labelsn, iouv)
- if plots:
- confusion_matrix.process_batch(predn, labelsn) # 计算混淆矩阵
- stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
- # Save/log
- if save_txt: # 保存预测信息到txt文件
- save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
- if save_json: # 保存预测信息到json文件
- save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
- callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
- # Plot images 将测试数据集中的预测结果和真实结果分别画在对应的图像中
- if plots and batch_i < 3:
- f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels
- Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start()
- f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
- Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()
- callbacks.run('on_val_batch_end')
- # Compute metrics 计算mAP 重点
- # 统计stats中所有图片的统计结果 将stats列表的信息拼接到一起
- # stats(concat后): list{4} correct, conf, pcls, tcls 统计出的整个数据集的GT
- # correct [img_sum, 10] 整个数据集所有图片中所有预测框在每一个iou条件下是否是TP [1905, 10]
- # conf [img_sum] 整个数据集所有图片中所有预测框的conf [1905]
- # pcls [img_sum] 整个数据集所有图片中所有预测框的类别 [1905]
- # tcls [gt_sum] 整个数据集所有图片所有gt框的class [929]
- stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
- if len(stats) and stats[0].any():
- # 根据上面的统计预测结果计算p, r, ap, f1, ap_class(ap_per_class函数是计算每个类的mAP等指标的)等指标
- # p: [nc] 最大平均f1时每个类别的precision
- # r: [nc] 最大平均f1时每个类别的recall
- # ap: [71, 10] 数据集每个类别在10个iou阈值下的mAP
- # f1 [nc] 最大平均f1时每个类别的f1
- # ap_class: [nc] 返回数据集中所有的类别index
- tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
- # ap50: [nc] 所有类别的mAP@0.5 ap: [nc] 所有类别的mAP@0.5:0.95
- ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
- # mp: [1] 所有类别的平均precision(最大f1时)
- # mr: [1] 所有类别的平均recall(最大f1时)
- # map50: [1] 所有类别的平均mAP@0.5
- # map: [1] 所有类别的平均mAP@0.5:0.95
- mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
- # nt: [nc] 统计出整个数据集的gt框中数据集各个类别的个数
- nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
- else:
- nt = torch.zeros(1)
- # Print results
- pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
- LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
- # Print results per class
- if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
- for i, c in enumerate(ap_class):
- LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
- # Print speeds
- t = tuple(x / seen * 1E3 for x in dt) # speeds per image
- if not training:
- shape = (batch_size, 3, imgsz, imgsz)
- LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
- # Plots 画出混淆矩阵
- if plots:
- confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
- callbacks.run('on_val_end')
- # Save JSON
- if save_json and len(jdict):
- w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
- anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
- pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
- LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
- with open(pred_json, 'w') as f:
- json.dump(jdict, f)
- try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
- check_requirements(['pycocotools'])
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- anno = COCO(anno_json) # init annotations api
- pred = anno.loadRes(pred_json) # init predictions api
- eval = COCOeval(anno, pred, 'bbox')
- if is_coco:
- eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
- eval.evaluate()
- eval.accumulate()
- eval.summarize()
- map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
- except Exception as e:
- LOGGER.info(f'pycocotools unable to run: {e}')
- # Return results
- model.float() # for training
- if not training:
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
- maps = np.zeros(nc) + map
- for i, c in enumerate(ap_class):
- maps[c] = ap[i]
- return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
- def parse_opt():
- parser = argparse.ArgumentParser()
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') # 数据集配置文件地址 包含数据集的路径、类别个数、类名、下载地址等信息
- parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') #模型的权重文件地址 weights/yolov5s.pt
- parser.add_argument('--batch-size', type=int, default=32, help='batch size') # 前向传播的批次大小 默认32
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') # 输入网络的图片分辨率 默认640
- parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') # object置信度阈值 默认0.001
- parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') # 进行NMS时IOU的阈值 默认0.6
- parser.add_argument('--task', default='val', help='train, val, test, speed or study') # 设置测试的类型 有train, val, test, speed or study几种 默认val
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') # 测试的设备
- parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') # 最大数据加载进程数
- parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') # 数据集是否只用一个类别 默认False
- parser.add_argument('--augment', action='store_true', help='augmented inference') # 测试是否使用TTA Test Time Augment 默认False
- parser.add_argument('--verbose', action='store_true', help='report mAP by class') # 是否打印出每个类别的mAP 默认False
- parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') # 保存结果为txt文件
- parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') # 保存标签+预测混合结果到*.txt
- parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') # 保存置信度到txt文件中
- parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')# 是否按照coco的json格式保存预测框,并且使用cocoapi做评估(需要同样coco的json格式的标签) 默认False
- parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name') # 测试保存的源文件 默认runs/test
- parser.add_argument('--name', default='exp', help='save to project/name') # 测试保存的文件地址 默认exp 保存在runs/test/exp下
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') # 是否存在当前文件 默认False 一般是 no exist-ok 连用 所以一般都要重新创建文件夹
- parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') # 是否使用半精度推理 默认False
- parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') # 使用OpenCV DNN进行ONNX推断
- opt = parser.parse_args()
- opt.data = check_yaml(opt.data) # check YAML
- opt.save_json |= opt.data.endswith('coco.yaml') # |或 左右两个变量有一个为True 左边变量就为True
- opt.save_txt |= opt.save_hybrid
- print_args(vars(opt))
- return opt
- def main(opt):
- # 检测requirements文件中需要的包是否安装好了
- check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
- if opt.task in ('train', 'val', 'test'): # run normally 如果task in ['train', 'val', 'test']就正常测试
- if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
- LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.')
- run(**vars(opt))
- else:
- weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
- opt.half = True # FP16 for fastest results
- if opt.task == 'speed': # speed benchmarks 如果task == 'speed' 就测试yolov5系列和yolov3-spp各个模型的速度评估
- # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
- opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
- for opt.weights in weights:
- run(**vars(opt), plots=False) # 主要分支
- elif opt.task == 'study': # speed vs mAP benchmarks 就评估yolov5系列和yolov3-spp各个模型在各个尺度下的指标并可视化
- # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
- for opt.weights in weights:
- f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
- x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
- for opt.imgsz in x: # img-size
- LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
- r, _, t = run(**vars(opt), plots=False)
- y.append(r + t) # results and times
- np.savetxt(f, y, fmt='%10.4g') # save
- os.system('zip -r study.zip study_*.txt')
- plot_val_study(x=x) # plot
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|