123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Train a YOLOv5 model on a custom dataset.
- Models and datasets download automatically from the latest YOLOv5 release.
- Models: https://github.com/ultralytics/yolov5/tree/master/models
- Datasets: https://github.com/ultralytics/yolov5/tree/master/data
- Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
- Usage:
- $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (RECOMMENDED)
- $ python path/to/train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch
- """
- import argparse
- import math
- import os
- import random
- import sys
- import time
- from copy import deepcopy
- from datetime import datetime
- from pathlib import Path
- import numpy as np
- import torch
- import torch.distributed as dist
- import torch.nn as nn
- import yaml
- from torch.cuda import amp
- from torch.nn.parallel import DistributedDataParallel as DDP
- from torch.optim import SGD, Adam, AdamW, lr_scheduler
- from tqdm.auto import tqdm
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- import val # for end-of-epoch mAP
- from models.experimental import attempt_load
- from models.yolo import Model
- from utils.autoanchor import check_anchors
- from utils.autobatch import check_train_batch_size
- from utils.callbacks import Callbacks
- from utils.datasets import create_dataloader
- from utils.downloads import attempt_download
- from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements,
- check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds,
- intersect_dicts, is_ascii, labels_to_class_weights, labels_to_image_weights, methods,
- one_cycle, print_args, print_mutation, strip_optimizer)
- from utils.loggers import Loggers
- from utils.loggers.wandb.wandb_utils import check_wandb_resume
- from utils.loss import ComputeLoss
- from utils.metrics import fitness
- from utils.plots import check_font, plot_evolve, plot_labels
- from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first
- LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
- RANK = int(os.getenv('RANK', -1))
- WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
- def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
- save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
- Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
- opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
- callbacks.run('on_pretrain_routine_start')
- # Directories
- w = save_dir / 'weights' # weights dir 权重保存目录
- (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
- last, best = w / 'last.pt', w / 'best.pt'
- # Hyperparameters
- if isinstance(hyp, str): # 超参数文件
- with open(hyp, errors='ignore') as f:
- hyp = yaml.safe_load(f) # load hyps dict 解析yaml文件
- LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
- # Save run settings 保存hyp和opt
- if not evolve:
- with open(save_dir / 'hyp.yaml', 'w') as f:
- yaml.safe_dump(hyp, f, sort_keys=False)
- with open(save_dir / 'opt.yaml', 'w') as f:
- yaml.safe_dump(vars(opt), f, sort_keys=False)
- # Loggers
- data_dict = None
- if RANK in [-1, 0]:
- loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
- if loggers.wandb:
- data_dict = loggers.wandb.data_dict
- if resume:
- weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
- # Register actions
- for k in methods(loggers):
- callbacks.register_action(k, callback=getattr(loggers, k))
- # Config
- plots = not evolve and not opt.noplots # create plots
- cuda = device.type != 'cpu'
- init_seeds(1 + RANK) # 初始化随机种子
- with torch_distributed_zero_first(LOCAL_RANK): # 加载数据配置信息
- data_dict = data_dict or check_dataset(data) # check if None
- if not is_ascii(data_dict['names']): # non-latin labels, i.e. asian, arabic, cyrillic
- check_font('Arial.Unicode.ttf', progress=True)
- train_path, val_path = data_dict['train'], data_dict['val'] # 获取训练集、验证集路径
- nc = 1 if single_cls else int(data_dict['nc']) # number of classes 获取类别数量,如果设置了opt。single_cls则为一类
- names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names 获取类别名字,如果设置了opt。single_cls则为一类
- assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
- is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
- # Model
- check_suffix(weights, '.pt') # check weights
- pretrained = weights.endswith('.pt') # 检查权重文件后缀名是否为.pt
- # 是否采用预训练
- if pretrained: # 加载预训练模型
- with torch_distributed_zero_first(LOCAL_RANK): # 加载模型
- weights = attempt_download(weights) # download if not found locally 如果本地没有则需要下载
- ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak 加载模型及参数
- '''
- 这里模型的创建可以通过opt.cfg,也可以通过ckpt['model'].yaml
- 这里的区别在于是否是resume, resume时会将opt.cfg设为空,
- 按照ckpt['model'].yaml创建模型;
- 这也影响着下面是否除去anchor的key,如果resume则不加载anchor
- 主要是因为保存的模型会保存anchors,有时候用户自定义anchor之后,再resume,则原来基于coco数据集的anchor就会壶盖自己设定的anchor,
- 所以下面设置了intersect_dicts,该函数就是忽略掉exclude
- '''
- model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create 通过opt.cfg或者ckpt['model'].yaml创建加载模型
- exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
- csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 读取ckpt的参数值
- csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect 转换为字典格式
- model.load_state_dict(csd, strict=False) # load 预训练模型加载
- # 显示加载预训练权重的键值对和创建模型的键值对
- # 如果pretrained为true,则会少加载两个键值对(anchors, anchor_grid)
- LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
- else:
- #创建新的模型,从头开始训练,ch为输入图片通道
- model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
- # Freeze 冻结模型层
- """
- 设置冻结层名字即可冻结模型层
- 作者不建议冻结层,因为在实验中显示冻结层不能获得更好的性能
- 作者为了使得优化参数分组可以正常进行,在下面将所有参数的requires_grad设为True
- """
- freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze 将需要冻结的层放入列表中
- for k, v in model.named_parameters():
- v.requires_grad = True # train all layers
- if any(x in k for x in freeze): # 如果当前层为需要冻结的层,则将v.requires_grad置为false
- LOGGER.info(f'freezing {k}')
- v.requires_grad = False
- # Image size
- gs = max(int(model.stride.max()), 32) # grid size (max stride)
- imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple # 检查输入图片分辨率确保能够整除总步长gs
- # Batch size
- if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
- batch_size = check_train_batch_size(model, imgsz)
- loggers.on_params_update({"batch_size": batch_size})
- # Optimizer
- # nbs为模拟的batch_size; 比如默认上面设置的opt.batch_size为16,nbs为64,则模型梯度累积了64/16=4次之后再更新一次模型,变相扩大了batch_size
- nbs = 64 # nominal batch size
- accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
- hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay 根据accumulate设置权重衰减系数
- LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
- g = [], [], [] # optimizer parameter groups ********************************************************************
- bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
- #将模型分为三组(weight, bias, 其他所有参数)进行优化 将模型分为三组(卷积神经网络的权重参数weights, 卷积神经网络偏置参数bias, 批归一化的权重参数weights)进行优化
- for v in model.modules():
- if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # 卷积神经网络偏置参数bias
- g[2].append(v.bias)
- if isinstance(v, bn): # weight (no decay) 批归一化的权重参数weights
- g[1].append(v.weight)
- elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) 卷积神经网络的权重参数weights
- g[0].append(v.weight)
- # 选用优化器,并设置g[2]的优化方式
- if opt.optimizer == 'Adam':
- optimizer = Adam(g[2], lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
- elif opt.optimizer == 'AdamW':
- optimizer = AdamW(g[2], lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
- else:
- optimizer = SGD(g[2], lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
- optimizer.add_param_group({'params': g[0], 'weight_decay': hyp['weight_decay']}) # add g0 with weight_decay 设置weight的优化方式
- optimizer.add_param_group({'params': g[1]}) # add g1 (BatchNorm2d weights) 设置biases的优化方式
- LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
- f"{len(g[1])} weight (no decay), {len(g[0])} weight, {len(g[2])} bias")
- del g
- # Scheduler 设置学习率衰减
- if opt.cos_lr:
- lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] 余弦退火
- else:
- lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
- scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
- # EMA指数移动平均(动量)
- ema = ModelEMA(model) if RANK in [-1, 0] else None
- # 加载预训练权重
- # 初始化开始训练的epoch和最好的结果
- # best_fitness是以[0.0, 0.0, 0.1, 0.9]为系数并乘以[精确度, 召回率, mAP@0.5, mAP@0.5:0.95]在求和所得
- # 根据best_fitness来保存best.pt
- start_epoch, best_fitness = 0, 0.0
- if pretrained:
- # Optimizer
- if ckpt['optimizer'] is not None:
- optimizer.load_state_dict(ckpt['optimizer'])
- best_fitness = ckpt['best_fitness']
- # EMA
- if ema and ckpt.get('ema'):
- ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
- ema.updates = ckpt['updates']
- # Epochs
- start_epoch = ckpt['epoch'] + 1
- # 如果resume,则备份权重 主要为了防止resume时出现其他问题导致把之前的权重覆盖掉,在这里进行备份。
- if resume:
- assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
- # 如果新设置epochs小于加载的eposh,则视新设置的epochs为需要训练的轮次数而不是总的轮次数。
- if epochs < start_epoch:
- LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
- epochs += ckpt['epoch'] # finetune additional epochs
- del ckpt, csd
- # DP mode 分布式训练,DataParallel模式,仅支持单机多卡,一般不会使用DP model 因为DDP model要比DP model优秀
- # rank为进程编号,如果设置为rank=-1并且有多块GPU,则使用DataParallel模式
- # rank=-1且gpu数量=1时,不会进行分布式
- if cuda and RANK == -1 and torch.cuda.device_count() > 1:
- LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
- 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
- model = torch.nn.DataParallel(model)
- # SyncBatchNorm 使用跨卡同步BN
- if opt.sync_bn and cuda and RANK != -1:
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
- LOGGER.info('Using SyncBatchNorm()')
- print('----------------------------------------------')
- opt.cache = 'val'
- # Trainloader 创建训练集dataloader
- train_loader, dataset = create_dataloader(train_path,
- imgsz,
- batch_size // WORLD_SIZE,
- gs,
- single_cls,
- hyp=hyp,
- augment=True,
- cache=None if opt.cache == 'val' else opt.cache,
- rect=opt.rect,
- rank=LOCAL_RANK,
- workers=workers,
- image_weights=opt.image_weights,
- quad=opt.quad,
- prefix=colorstr('train: '),
- shuffle=True)
- # 获取标签中最大的类别值, 并与类别数作比较,如果小于类别数则表示有问题
- mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class
- nb = len(train_loader) # number of batches
- assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
- # Process 0 TestLoader
- if RANK in [-1, 0]:
- val_loader = create_dataloader(val_path,
- imgsz,
- batch_size // WORLD_SIZE * 2,
- gs,
- single_cls,
- hyp=hyp,
- cache=None if noval else opt.cache,
- rect=True,
- rank=-1,
- workers=workers * 2,
- pad=0.5,
- prefix=colorstr('val: '))[0]
- if not resume:
- labels = np.concatenate(dataset.labels, 0)
- # c = torch.tensor(labels[:, 0]) # classes
- # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
- # model._initialize_biases(cf.to(device))
- if plots:
- plot_labels(labels, names, save_dir)
- # Anchors
- if not opt.noautoanchor:
- check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
- model.half().float() # pre-reduce anchor precision
- callbacks.run('on_pretrain_routine_end')
- # DDP mode
- if cuda and RANK != -1:
- model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
- # Model attributes
- nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
- hyp['box'] *= 3 / nl # scale to layers box系数
- hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers 根据自己数据集的类别数设置分类损失的系数
- hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
- hyp['label_smoothing'] = opt.label_smoothing
- model.nc = nc # attach number of classes to model 模型类别数
- model.hyp = hyp # attach hyperparameters to model 超参数
- model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights 从训练岩本标签得到类别权重(和类别中的目标数--即类别频率--成反比)
- model.names = names # 获取类别的名字
- # Start training
- t0 = time.time()
- nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations) 获取热身训练的迭代次数
- # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
- last_opt_step = -1
- # 初始化mAP和results
- maps = np.zeros(nc) # mAP per class
- results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
- '''
- 设置学习率衰减所进行到的轮次,
- 目的是打断训练后,--resume接着训练也能正常的衔接之前的论训练进行学习率衰减
- '''
- scheduler.last_epoch = start_epoch - 1 # do not move
- scaler = amp.GradScaler(enabled=cuda) # 设置混合进度训练 在训练最开始之气那实例化一个GradScaler对象
- stopper = EarlyStopping(patience=opt.patience)
- compute_loss = ComputeLoss(model) # 初始化Loss
- callbacks.run('on_train_start')
- '''
- 打印训练和测试输入图片分辨率
- 加载图片时调用的cpu进程数
- 从哪个epoch开始训练
- '''
- LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
- f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
- f"Logging results to {colorstr('bold', save_dir)}\n"
- f'Starting training for {epochs} epochs...')
- # 训练
- for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
- callbacks.run('on_train_epoch_start')
- model.train()
- # Update image weights (optional, single-GPU only)
- if opt.image_weights:
- '''
- 平衡类别策略
- 如果设置进行图片采样策略,则根据前面初始化的图片采样权重model.class_weights以及maps配合每张图片包含的类别数,通过random.choices生成图片索引indeices从而进行采样
- '''
- cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
- iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
- dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
- # Update mosaic border (optional)
- # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
- # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
- # 初始化训练时打印的平均损失信息
- mloss = torch.zeros(3, device=device) # mean losses
- if RANK != -1:
- # DDP模式打乱数据,ddp.sampler的随机此阿阳数据时基于epoch+seed作为随机种子
- # 每次epoch不同,随机种子就不同
- train_loader.sampler.set_epoch(epoch)
- pbar = enumerate(train_loader)
- LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
- if RANK in (-1, 0):
- pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar # 创建进度条
- optimizer.zero_grad() # 梯度清零
- for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
- callbacks.run('on_train_batch_start')
- # 计算迭代的次数iteration
- ni = i + nb * epoch # number integrated batches (since train start)
- imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
- # Warmup
- '''
- 热身训练(前nw次迭代)
- 在前nw次迭代中,根据以下方式选取accumulate和学习率
- '''
- if ni <= nw:
- xi = [0, nw] # x interp
- # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
- accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) # 累计n次后更新梯度值
- for j, x in enumerate(optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- '''
- bias的学习率从0.1下降到基准学习率lr*lf(epoch),
- 其他的参数学习率从0增加到lr*lf(epoch).
- lf为上面设置的余弦退火的衰减函数
- '''
- x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
- if 'momentum' in x: #动量momentum也从0.9慢慢变到hyp['momentum']中设置的值
- x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
- # Multi-scale 设置多尺度训练
- if opt.multi_scale:
- sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size 从imgsz*0.5-imgsz*1.5+gs随机选取尺寸(可以被gs整除的最小整数)
- sf = sz / max(imgs.shape[2:]) # scale factor
- if sf != 1:
- ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
- imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
- # Forward 混合精度训练
- with amp.autocast(enabled=cuda): # 开启autocast的context managers语义
- pred = model(imgs) # forward;前向传播
- # 计算损失, 包括分类损失,objectness损失, 框的回归损失
- # loss为总损失值, loss_items为一个元组, 包含分类损失, objectness损失, 框的回归损失和总损失。
- loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
- if RANK != -1:
- # 平均不同gpu之间的梯度
- loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
- if opt.quad:
- loss *= 4.
- # Backward
- scaler.scale(loss).backward() # 反向传播;Scales loss, 为了梯度放大
- # Optimize
- if ni - last_opt_step >= accumulate: # 模型反向传播accmulate次之后再根据累计的梯度更新一次参数
- # scaler.step() 首先把梯度的值unscale回来。
- # 如果梯度的值不是infs或者NaNs,那么调用optimizer.step()来更新权重,
- # 否则忽略step调用, 从而保证权重不更新
- scaler.step(optimizer) # optimizer.step 进行参数更新
- # 准备是否要增大scaler
- scaler.update()
- optimizer.zero_grad() # 梯度清零
- if ema:
- ema.update(model)
- last_opt_step = ni
- # Log
- if RANK in (-1, 0):
- # 显存,进行的轮次, 损失, target的数量和图片的size等信息
- mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
- mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
- pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
- (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
- callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots)
- if callbacks.stop_training:
- return
- # end batch ------------------------------------------------------------------------------------------------
- # Scheduler 进行学习率衰减
- lr = [x['lr'] for x in optimizer.param_groups] # for loggers
- scheduler.step() # 对lr进行调整
- if RANK in (-1, 0):
- # mAP
- callbacks.run('on_train_epoch_end', epoch=epoch)
- ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) #更新EMA的属性, 添加include的属性
- final_epoch = (epoch + 1 == epochs) or stopper.possible_stop #判断该epoch是否为最后一轮
- # 对测试集进行测试, 计算mAP等指标
- # 测试时使用的是EMA模型
- if not noval or final_epoch: # Calculate mAP
- results, maps, _ = val.run(data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- model=ema.ema,
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- plots=False,
- callbacks=callbacks,
- compute_loss=compute_loss)
- # Update best mAP 更新best_fitness
- fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
- if fi > best_fitness:
- best_fitness = fi
- log_vals = list(mloss) + list(results) + lr
- callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
- # Save model
- '''
- 保存&加载带checkpoint的模型用于inference或者resuming training;
- 保存模型,还保存了epoch, results, optimizer等信息,
- optimizer将不会在最后一轮完成后保存
- model保存的是EMA的模型
- '''
- if (not nosave) or (final_epoch and not evolve): # if save
- ckpt = {
- 'epoch': epoch,
- 'best_fitness': best_fitness,
- 'model': deepcopy(de_parallel(model)).half(),
- 'ema': deepcopy(ema.ema).half(),
- 'updates': ema.updates,
- 'optimizer': optimizer.state_dict(),
- 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,
- 'date': datetime.now().isoformat()}
- # Save last, best and delete 更新last、best模型
- torch.save(ckpt, last)
- if best_fitness == fi:
- torch.save(ckpt, best)
- if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):
- torch.save(ckpt, w / f'epoch{epoch}.pt')
- del ckpt
- callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
- # Stop Single-GPU
- if RANK == -1 and stopper(epoch=epoch, fitness=fi):
- break
- # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
- # stop = stopper(epoch=epoch, fitness=fi)
- # if RANK == 0:
- # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks
- # Stop DPP
- # with torch_distributed_zero_first(RANK):
- # if stop:
- # break # must break all DDP ranks
- # end epoch ----------------------------------------------------------------------------------------------------
- # end training -----------------------------------------------------------------------------------------------------
- if RANK in (-1, 0):
- LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
- for f in last, best:
- if f.exists():
- strip_optimizer(f) # strip optimizers
- if f is best: #测试best模型的效果
- LOGGER.info(f'\nValidating {f}...')
- results, _, _ = val.run(
- data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- model=attempt_load(f, device).half(),
- iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- save_json=is_coco,
- verbose=True,
- plots=plots,
- callbacks=callbacks,
- compute_loss=compute_loss) # val best model with plots
- if is_coco:
- callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
- callbacks.run('on_train_end', last, best, plots, epoch, results)
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
- torch.cuda.empty_cache() # 释放显存
- return results
- def parse_opt(known=False):
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path') # 预训练权重
- parser.add_argument('--cfg', type=str, default='', help='model.yaml path') # 模型配置文件及网络结构
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') # 数据集配置文件,数据集路径,类名等
- parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path') # 超参数文件
- parser.add_argument('--epochs', type=int, default=300) # 训练总轮次
- parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') # 批次大小
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') # 图像分辨率大小
- parser.add_argument('--rect', action='store_true', help='rectangular training') # 是否采用矩阵训练,默认采用False
- parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') # 断点续训
- parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') # 不保存模型
- parser.add_argument('--noval', action='store_true', help='only validate final epoch') # 不进行验证
- parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') # 不自动调整anchor,默认为False
- parser.add_argument('--noplots', action='store_true', help='save no plot files') #不保存绘制文件
- parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') # 是否进行超参数进化,默认为False
- parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') # 谷歌云盘bucket
- parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') # 是否提前缓存图片到内存,默认为False
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') # 训练设备
- parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') # 多尺度训练,默认为False
- parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') #数据集是否只有一个类别,默认为False
- parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') # 默认优化器
- parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') # 是否使用跨卡同步BN,在DDP模式使用
- parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') # dataloader的最大worker数量
- parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') # 运行项目的目录名称
- parser.add_argument('--name', default='exp', help='save to project/name') # 运行项目的目录名称
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') # 不要增加现有项目名称
- parser.add_argument('--quad', action='store_true', help='quad dataloader')
- parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') # 余弦LR调度器
- parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') # 标签平滑
- parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')#当模型长时间没有改进时停止
- parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') # 冻结层,迁移学习使用
- parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') # 每x个epochs保存一个检查点
- parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') # gpu编号
- # Weights & Biases arguments
- parser.add_argument('--entity', default=None, help='W&B: Entity')
- parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
- parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
- parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
- opt = parser.parse_known_args()[0] if known else parser.parse_args()
- return opt
- def main(opt, callbacks=Callbacks()):
- # Checks
- if RANK in (-1, 0): #表示进程序号,用于进程间通讯,表征进程优先级。rank = 0 的主机为 master 节点
- print_args(vars(opt)) # 打印参数字典
- check_git_status() # 检查代码是否为最新
- check_requirements(exclude=['thop']) # 检查python包的依赖项
- # Resume
- if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # 断点续训,恢复之前的训练
- ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # 如果resume是str,则表示传入的是模型的路径;get_latest_run()函数获取runs文件夹中最近的last。pt文件
- assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
- # optcan
- with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f: # 如果需要断点续训,则需要替换原本的opt参数
- opt = argparse.Namespace(**yaml.safe_load(f)) # replace
- opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
- LOGGER.info(f'Resuming training from {ckpt}')
- else: # 从头开始训练
- opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
- check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # 检查配置文件信息
- assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
- if opt.evolve: #进化策略 修改project目录路径
- if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
- opt.project = str(ROOT / 'runs/evolve')
- opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
- if opt.name == 'cfg': # 训练时项目的名称
- opt.name = Path(opt.cfg).stem # use model.yaml as name
- opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # 增量命名文件夹 exp1,exp2...
- # DDP mode
- device = select_device(opt.device, batch_size=opt.batch_size) # 选择设备
- ####################################################################
- if LOCAL_RANK != -1: #如果当前显卡在被使用 # LOCAL_RANK:进程内,GPU 编号,非显式参数. 比方说, rank = 3,local_rank = 0 表示第 3 个进程内的第 1 块 GPU
- msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
- assert not opt.image_weights, f'--image-weights {msg}'
- assert not opt.evolve, f'--evolve {msg}'
- assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
- assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
- assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
- torch.cuda.set_device(LOCAL_RANK)
- device = torch.device('cuda', LOCAL_RANK) # 根据gpu编号选择设备
- dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
- ####################################################################-
- # Train 如果不进行超参数进化,则直接调用train()函数开始训练
- if not opt.evolve: # 不执行进化策略
- train(opt.hyp, opt, device, callbacks)
- if WORLD_SIZE > 1 and RANK == 0:
- LOGGER.info('Destroying process group... ')
- dist.destroy_process_group()
- ######################################################################
- # Evolve hyperparameters (optional)
- else:
- # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
- # 超参数进化列表,括号里分别为(突变规模,最小值,最大值)
- meta = {
- 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
- 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
- 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
- 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
- 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
- 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
- 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
- 'box': (1, 0.02, 0.2), # box loss gain
- 'cls': (1, 0.2, 4.0), # cls loss gain
- 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
- 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
- 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
- 'iou_t': (0, 0.1, 0.7), # IoU training threshold
- 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
- 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
- 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
- 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
- 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
- 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
- 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
- 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
- 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
- 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
- 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
- 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
- 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
- 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
- 'mixup': (1, 0.0, 1.0), # image mixup (probability)
- 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
- with open(opt.hyp, errors='ignore') as f:
- hyp = yaml.safe_load(f) # load hyps dict
- if 'anchors' not in hyp: # anchors commented in hyp.yaml
- hyp['anchors'] = 3
- opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
- # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
- evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
- if opt.bucket:
- os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists
- for _ in range(opt.evolve): # generations to evolve
- if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
- # Select parent(s)
- parent = 'single' # parent selection method: 'single' or 'weighted' 选择进化方式
- x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) # 加载evolve.txt文件
- n = min(5, len(x)) # number of previous results to consider # 选取最多前五次进化结果
- x = x[np.argsort(-fitness(x))][:n] # top n mutations
- w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0) 根据结果计算hyp权重
- #根据不同进化方式获得base hyp
- if parent == 'single' or len(x) == 1:
- # x = x[random.randint(0, n - 1)] # random selection
- x = x[random.choices(range(n), weights=w)[0]] # weighted selection
- elif parent == 'weighted':
- x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
- # Mutate 超参数进化
- mp, s = 0.8, 0.2 # mutation probability, sigma
- npr = np.random
- npr.seed(int(time.time()))
- g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1 获取突变初始值
- ng = len(meta)
- v = np.ones(ng)
- while all(v == 1): # mutate until a change occurs (prevent duplicates) 设置突变
- v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
- for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
- hyp[k] = float(x[i + 7] * v[i]) # mutate
- # Constrain to limits 将hyp限制在规定范围内
- for k, v in meta.items():
- hyp[k] = max(hyp[k], v[1]) # lower limit
- hyp[k] = min(hyp[k], v[2]) # upper limit
- hyp[k] = round(hyp[k], 5) # significant digits
- # Train mutation 训练
- results = train(hyp.copy(), opt, device, callbacks)
- callbacks = Callbacks()
- # Write mutation results 写入results和对应的hyp到evolve.txt
- print_mutation(results, hyp.copy(), save_dir, opt.bucket)
- # Plot results
- plot_evolve(evolve_csv)
- LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
- f"Results saved to {colorstr('bold', save_dir)}\n"
- f'Usage example: $ python train.py --hyp {evolve_yaml}')
- ####################################################################-
- def run(**kwargs):
- # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
- opt = parse_opt(True)
- for k, v in kwargs.items():
- setattr(opt, k, v)
- main(opt)
- return opt
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
- # CUDA_VISIBLE_DEVICES="1,2" python train.py --data ../../data/helmet_fall_phone_delete_work/helmet_fall_phone.yaml --weights weights/yolov5l6.pt --img 1280 --hyp data/hyps/hyp.scratch-high.yaml --multi-scale --epochs 50 --name helmet_fall_phone_delete_work_2 --batch-size 8
|