123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
- Format | `export.py --include` | Model
- --- | --- | ---
- PyTorch | - | yolov5s.pt
- TorchScript | `torchscript` | yolov5s.torchscript
- ONNX | `onnx` | yolov5s.onnx
- OpenVINO | `openvino` | yolov5s_openvino_model/
- TensorRT | `engine` | yolov5s.engine
- CoreML | `coreml` | yolov5s.mlmodel
- TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
- TensorFlow GraphDef | `pb` | yolov5s.pb
- TensorFlow Lite | `tflite` | yolov5s.tflite
- TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
- TensorFlow.js | `tfjs` | yolov5s_web_model/
- Requirements:
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
- Usage:
- $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
- Inference:
- $ python path/to/detect.py --weights yolov5s.pt # PyTorch
- yolov5s.torchscript # TorchScript
- yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
- yolov5s.xml # OpenVINO
- yolov5s.engine # TensorRT
- yolov5s.mlmodel # CoreML (macOS-only)
- yolov5s_saved_model # TensorFlow SavedModel
- yolov5s.pb # TensorFlow GraphDef
- yolov5s.tflite # TensorFlow Lite
- yolov5s_edgetpu.tflite # TensorFlow Edge TPU
- TensorFlow.js:
- $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
- $ npm install
- $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
- $ npm start
- """
- import argparse
- import json
- import os
- import platform
- import subprocess
- import sys
- import time
- import warnings
- from pathlib import Path
- import pandas as pd
- import torch
- from torch.utils.mobile_optimizer import optimize_for_mobile
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- if platform.system() != 'Windows':
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- from models.experimental import attempt_load
- from models.yolo import Detect
- from utils.datasets import LoadImages
- from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_version, colorstr,
- file_size, print_args, url2file)
- from utils.torch_utils import select_device
- def export_formats():
- # YOLOv5 export formats
- x = [
- ['PyTorch', '-', '.pt', True],
- ['TorchScript', 'torchscript', '.torchscript', True],
- ['ONNX', 'onnx', '.onnx', True],
- ['OpenVINO', 'openvino', '_openvino_model', False],
- ['TensorRT', 'engine', '.engine', True],
- ['CoreML', 'coreml', '.mlmodel', False],
- ['TensorFlow SavedModel', 'saved_model', '_saved_model', True],
- ['TensorFlow GraphDef', 'pb', '.pb', True],
- ['TensorFlow Lite', 'tflite', '.tflite', False],
- ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False],
- ['TensorFlow.js', 'tfjs', '_web_model', False],]
- return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'GPU'])
- def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
- # YOLOv5 TorchScript model export
- try:
- LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
- f = file.with_suffix('.torchscript')
- ts = torch.jit.trace(model, im, strict=False)
- d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
- extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
- if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
- optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
- else:
- ts.save(str(f), _extra_files=extra_files)
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- return f
- except Exception as e:
- LOGGER.info(f'{prefix} export failure: {e}')
- def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
- # YOLOv5 ONNX export
- try:
- check_requirements(('onnx',))
- import onnx
- LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
- f = file.with_suffix('.onnx')
- torch.onnx.export(
- model,
- im,
- f,
- verbose=False,
- opset_version=opset,
- training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
- do_constant_folding=not train,
- input_names=['images'],
- output_names=['output'],
- dynamic_axes={
- 'images': {
- 0: 'batch',
- 2: 'height',
- 3: 'width'}, # shape(1,3,640,640)
- 'output': {
- 0: 'batch',
- 1: 'anchors'} # shape(1,25200,85)
- } if dynamic else None)
- # Checks
- model_onnx = onnx.load(f) # load onnx model
- onnx.checker.check_model(model_onnx) # check onnx model
- # Metadata
- d = {'stride': int(max(model.stride)), 'names': model.names}
- for k, v in d.items():
- meta = model_onnx.metadata_props.add()
- meta.key, meta.value = k, str(v)
- onnx.save(model_onnx, f)
- # Simplify
- if simplify:
- try:
- check_requirements(('onnx-simplifier',))
- import onnxsim
- LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
- model_onnx, check = onnxsim.simplify(model_onnx,
- dynamic_input_shape=dynamic,
- input_shapes={'images': list(im.shape)} if dynamic else None)
- assert check, 'assert check failed'
- onnx.save(model_onnx, f)
- except Exception as e:
- LOGGER.info(f'{prefix} simplifier failure: {e}')
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- return f
- except Exception as e:
- LOGGER.info(f'{prefix} export failure: {e}')
- def export_openvino(model, im, file, prefix=colorstr('OpenVINO:')):
- # YOLOv5 OpenVINO export
- try:
- check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
- import openvino.inference_engine as ie
- LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
- f = str(file).replace('.pt', '_openvino_model' + os.sep)
- cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f}"
- subprocess.check_output(cmd, shell=True)
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- return f
- except Exception as e:
- LOGGER.info(f'\n{prefix} export failure: {e}')
- def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
- # YOLOv5 CoreML export
- try:
- check_requirements(('coremltools',))
- import coremltools as ct
- LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
- f = file.with_suffix('.mlmodel')
- ts = torch.jit.trace(model, im, strict=False) # TorchScript model
- ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
- bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
- if bits < 32:
- if platform.system() == 'Darwin': # quantization only supported on macOS
- with warnings.catch_warnings():
- warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
- ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
- else:
- print(f'{prefix} quantization only supported on macOS, skipping...')
- ct_model.save(f)
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- return ct_model, f
- except Exception as e:
- LOGGER.info(f'\n{prefix} export failure: {e}')
- return None, None
- def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
- # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
- try:
- assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
- check_requirements(('nvidia-tensorrt',), cmds=('-U --index-url https://pypi.ngc.nvidia.com',))
- import tensorrt as trt
- if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
- grid = model.model[-1].anchor_grid
- model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
- export_onnx(model, im, file, 12, train, False, simplify) # opset 12
- model.model[-1].anchor_grid = grid
- else: # TensorRT >= 8
- check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
- export_onnx(model, im, file, 13, train, False, simplify) # opset 13
- onnx = file.with_suffix('.onnx')
- LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
- assert onnx.exists(), f'failed to export ONNX file: {onnx}'
- f = file.with_suffix('.engine') # TensorRT engine file
- logger = trt.Logger(trt.Logger.INFO)
- if verbose:
- logger.min_severity = trt.Logger.Severity.VERBOSE
- builder = trt.Builder(logger)
- config = builder.create_builder_config()
- config.max_workspace_size = workspace * 1 << 30
- # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
- flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
- network = builder.create_network(flag)
- parser = trt.OnnxParser(network, logger)
- if not parser.parse_from_file(str(onnx)):
- raise RuntimeError(f'failed to load ONNX file: {onnx}')
- inputs = [network.get_input(i) for i in range(network.num_inputs)]
- outputs = [network.get_output(i) for i in range(network.num_outputs)]
- LOGGER.info(f'{prefix} Network Description:')
- for inp in inputs:
- LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
- for out in outputs:
- LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')
- LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 else 32} engine in {f}')
- if builder.platform_has_fast_fp16:
- config.set_flag(trt.BuilderFlag.FP16)
- with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
- t.write(engine.serialize())
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- return f
- except Exception as e:
- LOGGER.info(f'\n{prefix} export failure: {e}')
- def export_saved_model(model,
- im,
- file,
- dynamic,
- tf_nms=False,
- agnostic_nms=False,
- topk_per_class=100,
- topk_all=100,
- iou_thres=0.45,
- conf_thres=0.25,
- keras=False,
- prefix=colorstr('TensorFlow SavedModel:')):
- # YOLOv5 TensorFlow SavedModel export
- try:
- import tensorflow as tf
- from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
- from models.tf import TFDetect, TFModel
- LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
- f = str(file).replace('.pt', '_saved_model')
- batch_size, ch, *imgsz = list(im.shape) # BCHW
- tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
- im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
- _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
- inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
- outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
- keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
- keras_model.trainable = False
- keras_model.summary()
- if keras:
- keras_model.save(f, save_format='tf')
- else:
- spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
- m = tf.function(lambda x: keras_model(x)) # full model
- m = m.get_concrete_function(spec)
- frozen_func = convert_variables_to_constants_v2(m)
- tfm = tf.Module()
- tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x)[0], [spec])
- tfm.__call__(im)
- tf.saved_model.save(tfm,
- f,
- options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
- if check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions())
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- return keras_model, f
- except Exception as e:
- LOGGER.info(f'\n{prefix} export failure: {e}')
- return None, None
- def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
- # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
- try:
- import tensorflow as tf
- from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
- LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
- f = file.with_suffix('.pb')
- m = tf.function(lambda x: keras_model(x)) # full model
- m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
- frozen_func = convert_variables_to_constants_v2(m)
- frozen_func.graph.as_graph_def()
- tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- return f
- except Exception as e:
- LOGGER.info(f'\n{prefix} export failure: {e}')
- def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
- # YOLOv5 TensorFlow Lite export
- try:
- import tensorflow as tf
- LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
- batch_size, ch, *imgsz = list(im.shape) # BCHW
- f = str(file).replace('.pt', '-fp16.tflite')
- converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
- converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
- converter.target_spec.supported_types = [tf.float16]
- converter.optimizations = [tf.lite.Optimize.DEFAULT]
- if int8:
- from models.tf import representative_dataset_gen
- dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
- converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
- converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
- converter.target_spec.supported_types = []
- converter.inference_input_type = tf.uint8 # or tf.int8
- converter.inference_output_type = tf.uint8 # or tf.int8
- converter.experimental_new_quantizer = True
- f = str(file).replace('.pt', '-int8.tflite')
- if nms or agnostic_nms:
- converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
- tflite_model = converter.convert()
- open(f, "wb").write(tflite_model)
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- return f
- except Exception as e:
- LOGGER.info(f'\n{prefix} export failure: {e}')
- def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')):
- # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
- try:
- cmd = 'edgetpu_compiler --version'
- help_url = 'https://coral.ai/docs/edgetpu/compiler/'
- assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
- if subprocess.run(cmd + ' >/dev/null', shell=True).returncode != 0:
- LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
- sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
- for c in (
- 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
- 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
- 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
- subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
- ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
- LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
- f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
- f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
- cmd = f"edgetpu_compiler -s -o {file.parent} {f_tfl}"
- subprocess.run(cmd, shell=True, check=True)
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- return f
- except Exception as e:
- LOGGER.info(f'\n{prefix} export failure: {e}')
- def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
- # YOLOv5 TensorFlow.js export
- try:
- check_requirements(('tensorflowjs',))
- import re
- import tensorflowjs as tfjs
- LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
- f = str(file).replace('.pt', '_web_model') # js dir
- f_pb = file.with_suffix('.pb') # *.pb path
- f_json = f + '/model.json' # *.json path
- cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
- f'--output_node_names="Identity,Identity_1,Identity_2,Identity_3" {f_pb} {f}'
- subprocess.run(cmd, shell=True)
- with open(f_json) as j:
- json = j.read()
- with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
- subst = re.sub(
- r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
- r'"Identity.?.?": {"name": "Identity.?.?"}, '
- r'"Identity.?.?": {"name": "Identity.?.?"}, '
- r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
- r'"Identity_1": {"name": "Identity_1"}, '
- r'"Identity_2": {"name": "Identity_2"}, '
- r'"Identity_3": {"name": "Identity_3"}}}', json)
- j.write(subst)
- LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
- return f
- except Exception as e:
- LOGGER.info(f'\n{prefix} export failure: {e}')
- @torch.no_grad()
- def run(
- data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
- weights=ROOT / 'yolov5s.pt', # weights path
- imgsz=(640, 640), # image (height, width)
- batch_size=1, # batch size
- device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- include=('torchscript', 'onnx'), # include formats
- half=False, # FP16 half-precision export
- inplace=False, # set YOLOv5 Detect() inplace=True
- train=False, # model.train() mode
- optimize=False, # TorchScript: optimize for mobile
- int8=False, # CoreML/TF INT8 quantization
- dynamic=False, # ONNX/TF: dynamic axes
- simplify=False, # ONNX: simplify model
- opset=12, # ONNX: opset version
- verbose=False, # TensorRT: verbose log
- workspace=4, # TensorRT: workspace size (GB)
- nms=False, # TF: add NMS to model
- agnostic_nms=False, # TF: add agnostic NMS to model
- topk_per_class=100, # TF.js NMS: topk per class to keep
- topk_all=100, # TF.js NMS: topk for all classes to keep
- iou_thres=0.45, # TF.js NMS: IoU threshold
- conf_thres=0.25, # TF.js NMS: confidence threshold
- ):
- t = time.time()
- include = [x.lower() for x in include] # to lowercase
- formats = tuple(export_formats()['Argument'][1:]) # --include arguments
- flags = [x in include for x in formats]
- assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {formats}'
- jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags # export booleans
- file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
- # Load PyTorch model
- device = select_device(device)
- if half:
- assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
- model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model
- nc, names = model.nc, model.names # number of classes, class names
- # Checks
- imgsz *= 2 if len(imgsz) == 1 else 1 # expand
- assert nc == len(names), f'Model class count {nc} != len(names) {len(names)}'
- # Input
- gs = int(max(model.stride)) # grid size (max stride)
- imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
- im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
- # Update model
- if half and not coreml:
- im, model = im.half(), model.half() # to FP16
- model.train() if train else model.eval() # training mode = no Detect() layer grid construction
- for k, m in model.named_modules():
- if isinstance(m, Detect):
- m.inplace = inplace
- m.onnx_dynamic = dynamic
- m.export = True
- for _ in range(2):
- y = model(im) # dry runs
- shape = tuple(y[0].shape) # model output shape
- LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
- # Exports
- f = [''] * 10 # exported filenames
- warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
- if jit:
- f[0] = export_torchscript(model, im, file, optimize)
- if engine: # TensorRT required before ONNX
- f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose)
- if onnx or xml: # OpenVINO requires ONNX
- f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify)
- if xml: # OpenVINO
- f[3] = export_openvino(model, im, file)
- if coreml:
- _, f[4] = export_coreml(model, im, file, int8, half)
- # TensorFlow Exports
- if any((saved_model, pb, tflite, edgetpu, tfjs)):
- if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
- check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow`
- assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
- model, f[5] = export_saved_model(model.cpu(),
- im,
- file,
- dynamic,
- tf_nms=nms or agnostic_nms or tfjs,
- agnostic_nms=agnostic_nms or tfjs,
- topk_per_class=topk_per_class,
- topk_all=topk_all,
- conf_thres=conf_thres,
- iou_thres=iou_thres) # keras model
- if pb or tfjs: # pb prerequisite to tfjs
- f[6] = export_pb(model, im, file)
- if tflite or edgetpu:
- f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
- if edgetpu:
- f[8] = export_edgetpu(model, im, file)
- if tfjs:
- f[9] = export_tfjs(model, im, file)
- # Finish
- f = [str(x) for x in f if x] # filter out '' and None
- if any(f):
- LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
- f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
- f"\nDetect: python detect.py --weights {f[-1]}"
- f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')"
- f"\nValidate: python val.py --weights {f[-1]}"
- f"\nVisualize: https://netron.app")
- return f # return list of exported files/dirs
- def parse_opt():
- parser = argparse.ArgumentParser()
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
- parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
- parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
- parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
- parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
- parser.add_argument('--train', action='store_true', help='model.train() mode')
- parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
- parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
- parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
- parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
- parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
- parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
- parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
- parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
- parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
- parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
- parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
- parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
- parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
- parser.add_argument('--include',
- nargs='+',
- default=['torchscript', 'onnx'],
- help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs')
- opt = parser.parse_args()
- print_args(vars(opt))
- return opt
- def main(opt):
- for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
- run(**vars(opt))
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|