123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Run inference on images, videos, directories, streams, etc.
- Usage - sources:
- $ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam
- img.jpg # image
- vid.mp4 # video
- path/ # directory
- path/*.jpg # glob
- 'https://youtu.be/Zgi9g1ksQHc' # YouTube
- 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
- Usage - formats:
- $ python path/to/detect.py --weights yolov5s.pt # PyTorch
- yolov5s.torchscript # TorchScript
- yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
- yolov5s.xml # OpenVINO
- yolov5s.engine # TensorRT
- yolov5s.mlmodel # CoreML (macOS-only)
- yolov5s_saved_model # TensorFlow SavedModel
- yolov5s.pb # TensorFlow GraphDef
- yolov5s.tflite # TensorFlow Lite
- yolov5s_edgetpu.tflite # TensorFlow Edge TPU
- """
- import argparse
- import os
- import sys
- from pathlib import Path
- import torch
- import torch.backends.cudnn as cudnn
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- from models.common import DetectMultiBackend
- from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
- from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
- increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
- from utils.plots import Annotator, colors, save_one_box
- from utils.torch_utils import select_device, time_sync
- @torch.no_grad()
- def run(
- weights=ROOT / 'yolov5s.pt', # model.pt path(s)
- source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
- data=ROOT / 'data/coco128.yaml', # dataset.yaml path
- imgsz=(640, 640), # inference size (height, width)
- conf_thres=0.25, # confidence threshold
- iou_thres=0.45, # NMS IOU threshold
- max_det=1000, # maximum detections per image
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- view_img=False, # show results
- save_txt=False, # save results to *.txt
- save_conf=False, # save confidences in --save-txt labels
- save_crop=False, # save cropped prediction boxes
- nosave=False, # do not save images/videos
- classes=None, # filter by class: --class 0, or --class 0 2 3
- agnostic_nms=False, # class-agnostic NMS
- augment=False, # augmented inference
- visualize=False, # visualize features
- update=False, # update all models
- project=ROOT / 'runs/detect', # save results to project/name
- name='exp', # save results to project/name
- exist_ok=False, # existing project/name ok, do not increment
- line_thickness=3, # bounding box thickness (pixels)
- hide_labels=False, # hide labels
- hide_conf=False, # hide confidences
- half=False, # use FP16 half-precision inference
- dnn=False, # use OpenCV DNN for ONNX inference
- ):
- source = str(source)
- save_img = not nosave and not source.endswith('.txt') # 判æ–nosave 以å�Šsource是å�¦ä¸ºtxt文件
- is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) # 是�是图�或者视频文� is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) # 是�是网络链� webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file) # 是��用网络摄�� if is_url and is_file:
- source = check_file(source) # download 下载文件
- # Directories
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run 生�增�文件�run/detect/exp
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir 创建文件�
- # Load model
- device = select_device(device) # 选择设备(GPU or CPUï¼? model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) #æ£€æµ‹ç¼–è¯‘æ¡†æž¶ï¼Œæ ¹æ�®ä¸�å�Œçš„编译框架读å�–ä¸�å�Œç±»åž‹çš„æ�ƒé‡�文件 pytorchã€�tensorflowã€�tensorrtç? stride, names, pt = model.stride, model.names, model.pt
- imgsz = check_img_size(imgsz, s=stride) # check image size 检查输入图片的尺寸是�能被 stride(32) 整除,如果�能则调整图片大��返�
- # Dataloader
- if webcam: # 如果开�摄�头
- view_img = check_imshow()
- cudnn.benchmark = True # set True to speed up constant image size inference
- dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
- bs = len(dataset) # batch_size
- else:
- dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) #直接从source文件夹下读�所有图片�� bs = 1 # batch_size
- vid_path, vid_writer = [None] * bs, [None] * bs
- # Run inference
- model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup 模型预çƒ
- dt, seen = [0.0, 0.0, 0.0], 0
- for path, im, im0s, vid_cap, s in dataset: # path:图片路径 ,im:缩放�的图片,im0s:未缩放的原图, vid_cap:是�为视频,s:输出信�
- # from collections import Counter
- # count = Counter(im)
- t1 = time_sync()
- im = torch.from_numpy(im).to(device)
- im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 å�Šç²¾åº?全精åº? im /= 255 # 0 - 255 to 0.0 - 1.0 归一åŒ? if len(im.shape) == 3: # å¢žåŠ ä¸€ä¸ªç»´åº? im = im[None] # expand for batch dim[1, 3, 640, 480]
- t2 = time_sync()
- dt[0] += t2 - t1
- # Inference
- visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False # 是�增�生�文件�run/detect/exp
- pred = model(im, augment=augment, visualize=visualize) # 图片推� [1,18900,85]=>([1, 3*(80*80+40*40+20*20), x,y,w,h,c,classes(80)])
- t3 = time_sync()
- dt[1] += t3 - t2
- # NMS
- pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) #NMS��大抑� dt[2] += time_sync() - t3
- # Second-stage classifier (optional)
- # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
- # Process predictions 对�个预测框�处� for i, det in enumerate(pred): # per image
- seen += 1
- if webcam: # batch_size >= 1 如果输入æº�æ—¶webcam则batch_size>=1,å�–出datasetä¸çš„ä¸€å¼ å›¾ç‰? p, im0, frame = path[i], im0s[i].copy(), dataset.count
- s += f'{i}: '
- else:
- p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) # frame:视频�
- p = Path(p) # to Path
- save_path = str(save_dir / p.name) # im.jpg 结果图片路径
- txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt 结果å��æ ‡ä¿¡æ�¯txt文件路径
- s += '%gx%g ' % im.shape[2:] # print string
- gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
- imc = im0.copy() if save_crop else im0 # for save_crop
- annotator = Annotator(im0, line_width=line_thickness, example=str(names))
- if len(det):
- # Rescale boxes from img_size to im0 size
- det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() #将预测信��射到原图
- # Print results
- for c in det[:, -1].unique(): # 打�检测到的类别数� n = (det[:, -1] == c).sum() # detections per class
- s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
- # Write results
- for *xyxy, conf, cls in reversed(det):
- if save_txt: # Write to file ä¿�å˜ç»“果到txt文件
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
- line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
- with open(txt_path + '.txt', 'a') as f:
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
- if save_img or save_crop or view_img: # Add bbox to image 在图片上画框展示
- c = int(cls) # integer class
- label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
- annotator.box_label(xyxy, label, color=colors(c, True))
- if save_crop:
- save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) #在原图上画框+将预测出æ�¥çš„ç›®æ ‡å‰ªåˆ‡å‡ºæ�¥ï¼Œä¿�å˜æˆ�图片
- # Stream results
- im0 = annotator.result()
- if view_img: # 显示图片
- cv2.imshow(str(p), im0)
- cv2.waitKey(1) # 1 millisecond
- # Save results (image with detections)
- if save_img: # ä¿�å˜å›¾ç‰‡
- if dataset.mode == 'image':
- cv2.imwrite(save_path, im0)
- else: # 'video' or 'stream'
- if vid_path[i] != save_path: # new video
- vid_path[i] = save_path
- if isinstance(vid_writer[i], cv2.VideoWriter):
- vid_writer[i].release() # release previous video writer
- if vid_cap: # video
- fps = vid_cap.get(cv2.CAP_PROP_FPS)
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- else: # stream
- fps, w, h = 30, im0.shape[1], im0.shape[0]
- save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
- vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
- vid_writer[i].write(im0)
- # Print time (inference-only)
- LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
- # Print results
- t = tuple(x / seen * 1E3 for x in dt) # speeds per image 打�图片检测速度
- LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
- if save_txt or save_img: # ä¿�å˜txt文件或者时ä¿�å˜å›¾ç‰‡
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
- if update:
- strip_optimizer(weights) # update model (to fix SourceChangeWarning)
- def parse_opt():
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'runs/train/shjd2/weights/best.pt', help='model path(s)')
- parser.add_argument('--source', type=str, default='/data/fengyang/sunwin/code/yolov5/test1', help='file/dir/URL/glob, 0 for webcam')
- # parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
- # parser.add_argument('--data', type=str, default='/data2/fengyang/sunwin/data/image/shanghai_jiading/yolo_txt/shanghai_jiading.yaml', help='(optional) dataset.yaml path')
- parser.add_argument('--data', type=str, default='/data/fengyang/sunwin/data/helmet_fall_phone_delete_work/helmet_fall_phone.yaml', help='(optional) dataset.yaml path')
- parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
- parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') # 置信度阈� parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') # nms的iou阈� parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
- parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--view-img', action='store_true', help='show results')
- parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
- parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
- parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
- parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
- parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
- parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') # 进行nms是�也去除��类别之间的框,默认为False
- parser.add_argument('--augment', action='store_true', help='augmented inference') #推ç�†æ—¶è¿›è¡Œå¤šå°ºåº¦ã€�翻转ç‰æ“�作推ç�†
- parser.add_argument('--visualize', action='store_true', help='visualize features')
- parser.add_argument('--update', action='store_true', help='update all models')
- parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
- parser.add_argument('--name', default='exp', help='save results to project/name')
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
- parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
- parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
- parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
- parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
- parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
- opt = parser.parse_args()
- opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
- print_args(vars(opt))
- return opt
- def main(opt):
- check_requirements(exclude=('tensorboard', 'thop'))
- run(**vars(opt))
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|