detect1.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Run inference on images, videos, directories, streams, etc.
  4. Usage - sources:
  5. $ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam
  6. img.jpg # image
  7. vid.mp4 # video
  8. path/ # directory
  9. path/*.jpg # glob
  10. 'https://youtu.be/Zgi9g1ksQHc' # YouTube
  11. 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
  12. Usage - formats:
  13. $ python path/to/detect.py --weights yolov5s.pt # PyTorch
  14. yolov5s.torchscript # TorchScript
  15. yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
  16. yolov5s.xml # OpenVINO
  17. yolov5s.engine # TensorRT
  18. yolov5s.mlmodel # CoreML (macOS-only)
  19. yolov5s_saved_model # TensorFlow SavedModel
  20. yolov5s.pb # TensorFlow GraphDef
  21. yolov5s.tflite # TensorFlow Lite
  22. yolov5s_edgetpu.tflite # TensorFlow Edge TPU
  23. """
  24. import argparse
  25. import os
  26. import sys
  27. from pathlib import Path
  28. import torch
  29. import torch.backends.cudnn as cudnn
  30. FILE = Path(__file__).resolve()
  31. ROOT = FILE.parents[0] # YOLOv5 root directory
  32. if str(ROOT) not in sys.path:
  33. sys.path.append(str(ROOT)) # add ROOT to PATH
  34. ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
  35. from models.common import DetectMultiBackend
  36. from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
  37. from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
  38. increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
  39. from utils.plots import Annotator, colors, save_one_box
  40. from utils.torch_utils import select_device, time_sync
  41. @torch.no_grad()
  42. def run(
  43. weights=ROOT / 'yolov5s.pt', # model.pt path(s)
  44. source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
  45. data=ROOT / 'data/coco128.yaml', # dataset.yaml path
  46. imgsz=(640, 640), # inference size (height, width)
  47. conf_thres=0.25, # confidence threshold
  48. iou_thres=0.45, # NMS IOU threshold
  49. max_det=1000, # maximum detections per image
  50. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  51. view_img=False, # show results
  52. save_txt=False, # save results to *.txt
  53. save_conf=False, # save confidences in --save-txt labels
  54. save_crop=False, # save cropped prediction boxes
  55. nosave=False, # do not save images/videos
  56. classes=None, # filter by class: --class 0, or --class 0 2 3
  57. agnostic_nms=False, # class-agnostic NMS
  58. augment=False, # augmented inference
  59. visualize=False, # visualize features
  60. update=False, # update all models
  61. project=ROOT / 'runs/detect', # save results to project/name
  62. name='exp', # save results to project/name
  63. exist_ok=False, # existing project/name ok, do not increment
  64. line_thickness=3, # bounding box thickness (pixels)
  65. hide_labels=False, # hide labels
  66. hide_conf=False, # hide confidences
  67. half=False, # use FP16 half-precision inference
  68. dnn=False, # use OpenCV DNN for ONNX inference
  69. ):
  70. source = str(source)
  71. save_img = not nosave and not source.endswith('.txt') # 判断nosave 以�source是�为txt文件
  72. is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) # 是�是图�或者视频文� is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) # 是�是网络链� webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file) # 是��用网络摄�� if is_url and is_file:
  73. source = check_file(source) # download 下载文件
  74. # Directories
  75. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run 生�增�文件�run/detect/exp
  76. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir 创建文件�
  77. # Load model
  78. device = select_device(device) # 选择设备(GPU or CPU� model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) #检测编译框架,根���的编译框架读���类型的��文件 pytorch�tensorflow�tensorrt� stride, names, pt = model.stride, model.names, model.pt
  79. imgsz = check_img_size(imgsz, s=stride) # check image size 检查输入图片的尺寸是�能被 stride(32) 整除,如果�能则调整图片大��返�
  80. # Dataloader
  81. if webcam: # 如果开�摄�头
  82. view_img = check_imshow()
  83. cudnn.benchmark = True # set True to speed up constant image size inference
  84. dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
  85. bs = len(dataset) # batch_size
  86. else:
  87. dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) #直接从source文件夹下读�所有图片�� bs = 1 # batch_size
  88. vid_path, vid_writer = [None] * bs, [None] * bs
  89. # Run inference
  90. model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup 模型预热
  91. dt, seen = [0.0, 0.0, 0.0], 0
  92. for path, im, im0s, vid_cap, s in dataset: # path:图片路径 ,im:缩放�的图片,im0s:未缩放的原图, vid_cap:是�为视频,s:输出信�
  93. # from collections import Counter
  94. # count = Counter(im)
  95. t1 = time_sync()
  96. im = torch.from_numpy(im).to(device)
  97. im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 �精�全精� im /= 255 # 0 - 255 to 0.0 - 1.0 归一� if len(im.shape) == 3: # 增加一个维� im = im[None] # expand for batch dim[1, 3, 640, 480]
  98. t2 = time_sync()
  99. dt[0] += t2 - t1
  100. # Inference
  101. visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False # 是�增�生�文件�run/detect/exp
  102. pred = model(im, augment=augment, visualize=visualize) # 图片推� [1,18900,85]=>([1, 3*(80*80+40*40+20*20), x,y,w,h,c,classes(80)])
  103. t3 = time_sync()
  104. dt[1] += t3 - t2
  105. # NMS
  106. pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) #NMS��大抑� dt[2] += time_sync() - t3
  107. # Second-stage classifier (optional)
  108. # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
  109. # Process predictions 对�个预测框�处� for i, det in enumerate(pred): # per image
  110. seen += 1
  111. if webcam: # batch_size >= 1 如果输入�时webcam则batch_size>=1,�出dataset中的一张图� p, im0, frame = path[i], im0s[i].copy(), dataset.count
  112. s += f'{i}: '
  113. else:
  114. p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) # frame:视频�
  115. p = Path(p) # to Path
  116. save_path = str(save_dir / p.name) # im.jpg 结果图片路径
  117. txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt 结果�标信�txt文件路径
  118. s += '%gx%g ' % im.shape[2:] # print string
  119. gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
  120. imc = im0.copy() if save_crop else im0 # for save_crop
  121. annotator = Annotator(im0, line_width=line_thickness, example=str(names))
  122. if len(det):
  123. # Rescale boxes from img_size to im0 size
  124. det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() #将预测信��射到原图
  125. # Print results
  126. for c in det[:, -1].unique(): # 打�检测到的类别数� n = (det[:, -1] == c).sum() # detections per class
  127. s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
  128. # Write results
  129. for *xyxy, conf, cls in reversed(det):
  130. if save_txt: # Write to file �存结果到txt文件
  131. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  132. line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
  133. with open(txt_path + '.txt', 'a') as f:
  134. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  135. if save_img or save_crop or view_img: # Add bbox to image 在图片上画框展示
  136. c = int(cls) # integer class
  137. label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
  138. annotator.box_label(xyxy, label, color=colors(c, True))
  139. if save_crop:
  140. save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) #在原图上画框+将预测出�的目标剪切出�,�存�图片
  141. # Stream results
  142. im0 = annotator.result()
  143. if view_img: # 显示图片
  144. cv2.imshow(str(p), im0)
  145. cv2.waitKey(1) # 1 millisecond
  146. # Save results (image with detections)
  147. if save_img: # �存图片
  148. if dataset.mode == 'image':
  149. cv2.imwrite(save_path, im0)
  150. else: # 'video' or 'stream'
  151. if vid_path[i] != save_path: # new video
  152. vid_path[i] = save_path
  153. if isinstance(vid_writer[i], cv2.VideoWriter):
  154. vid_writer[i].release() # release previous video writer
  155. if vid_cap: # video
  156. fps = vid_cap.get(cv2.CAP_PROP_FPS)
  157. w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  158. h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  159. else: # stream
  160. fps, w, h = 30, im0.shape[1], im0.shape[0]
  161. save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
  162. vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
  163. vid_writer[i].write(im0)
  164. # Print time (inference-only)
  165. LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
  166. # Print results
  167. t = tuple(x / seen * 1E3 for x in dt) # speeds per image 打�图片检测速度
  168. LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
  169. if save_txt or save_img: # �存txt文件或者时�存图片
  170. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  171. LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
  172. if update:
  173. strip_optimizer(weights) # update model (to fix SourceChangeWarning)
  174. def parse_opt():
  175. parser = argparse.ArgumentParser()
  176. parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'runs/train/shjd2/weights/best.pt', help='model path(s)')
  177. parser.add_argument('--source', type=str, default='/data/fengyang/sunwin/code/yolov5/test1', help='file/dir/URL/glob, 0 for webcam')
  178. # parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
  179. # parser.add_argument('--data', type=str, default='/data2/fengyang/sunwin/data/image/shanghai_jiading/yolo_txt/shanghai_jiading.yaml', help='(optional) dataset.yaml path')
  180. parser.add_argument('--data', type=str, default='/data/fengyang/sunwin/data/helmet_fall_phone_delete_work/helmet_fall_phone.yaml', help='(optional) dataset.yaml path')
  181. parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
  182. parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') # 置信度阈� parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') # nms的iou阈� parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
  183. parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  184. parser.add_argument('--view-img', action='store_true', help='show results')
  185. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  186. parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  187. parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
  188. parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
  189. parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
  190. parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') # 进行nms是�也去除��类别之间的框,默认为False
  191. parser.add_argument('--augment', action='store_true', help='augmented inference') #推�时进行多尺度�翻转等�作推�
  192. parser.add_argument('--visualize', action='store_true', help='visualize features')
  193. parser.add_argument('--update', action='store_true', help='update all models')
  194. parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
  195. parser.add_argument('--name', default='exp', help='save results to project/name')
  196. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  197. parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
  198. parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
  199. parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
  200. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  201. parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
  202. opt = parser.parse_args()
  203. opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
  204. print_args(vars(opt))
  205. return opt
  206. def main(opt):
  207. check_requirements(exclude=('tensorboard', 'thop'))
  208. run(**vars(opt))
  209. if __name__ == "__main__":
  210. opt = parse_opt()
  211. main(opt)