# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Loss functions """ import torch import torch.nn as nn from utils.metrics import bbox_iou from utils.torch_utils import de_parallel # 标签平滑 def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 # return positive, negative label smoothing BCE targets return 1.0 - 0.5 * eps, 0.5 * eps class BCEBlurWithLogitsLoss(nn.Module): # BCEwithLogitLoss() with reduced missing label effects. def __init__(self, alpha=0.05): """ 标签平滑操作 [1, 0] => [0.95, 0.05] :param alpha:平滑参数 :type alpha: """ super().__init__() self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() self.alpha = alpha def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred = torch.sigmoid(pred) # prob from logits dx = pred - true # reduce only missing label effects # dx = (pred - true).abs() # reduce missing label and false label effects alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) loss *= alpha_factor return loss.mean() class FocalLoss(nn.Module): # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super().__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss class QFocalLoss(nn.Module): # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super().__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred_prob = torch.sigmoid(pred) # prob from logits alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = torch.abs(true - pred_prob) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss #计算损失(分类损失 + 置信度损失 + 坐标框损失) class ComputeLoss: sort_obj_iou = False # Compute losses def __init__(self, model, autobalance=False): device = next(model.parameters()).device # get model device h = model.hyp # hyperparameters # Define criteria BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets # Focal loss g = h['fl_gamma'] # focal loss gamma 如果设置了fl_gamma参数, 就是用focal loss,默认没有使用 if g > 0: BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) m = de_parallel(model).model[-1] # Detect() module self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 设置三个特征图对应输出的损失系数 self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance self.na = m.na # number of anchors self.nc = m.nc # number of classes self.nl = m.nl # number of layers self.anchors = m.anchors self.device = device def __call__(self, p, targets): # predictions, targets # ''' :param p: 网络输出,List[torch.tensor * 3, p[i].shape = (b, 3, h, w, nc+5)], hw分别为特征图的长宽,b为batch-size :type p: :param targets:targets.shape = (nt, 6), 6=icxywh, i=0表示第一张图片, c为类别, 然后为坐标xywh :type targets: :return: :rtype: ''' #初始化各个损失 lcls = torch.zeros(1, device=self.device) # class loss lbox = torch.zeros(1, device=self.device) # box loss lobj = torch.zeros(1, device=self.device) # object loss tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets 获得标签分类,边框,索引,anchors # Losses 遍历每个预测输出 for i, pi in enumerate(p): # layer index, layer predictions # b表示当前bbox属于batch内部的第几张图片, # a表示当前bbox和当前层的第几个anchor匹配上, # gi,gj是对应的负责预测该bbox的网格坐标 b, a, gj, gi = indices[i] # image, anchor, gridy, gridx tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj n = b.shape[0] # number of targets if n: # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0 pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions 找到对应网格的输出,取出对应位置预测值 # Regression 目标框回归 pxy = pxy.sigmoid() * 2 - 0.5 pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] pbox = torch.cat((pxy, pwh), 1) # predicted box iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target) 计算边框损失,计算的是CIOU lbox += (1.0 - iou).mean() # iou loss # Objectness 置信度损失 iou = iou.detach().clamp(0).type(tobj.dtype) if self.sort_obj_iou: j = iou.argsort() b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j] if self.gr < 1: iou = (1.0 - self.gr) + self.gr * iou # 将正样本的iou赋给 tobj[b, a, gj, gi] = iou # iou ratio # Classification 分类损失 if self.nc > 1: # cls loss (only if multiple classes) 类别数大于1 t = torch.full_like(pcls, self.cn, device=self.device) # targets t[range(n), tcls[i]] = self.cp lcls += self.BCEcls(pcls, t) # BCE 分别对每个类别计算loss # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] obji = self.BCEobj(pi[..., 4], tobj) lobj += obji * self.balance[i] # obj loss if self.autobalance: self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() if self.autobalance: self.balance = [x / self.balance[self.ssi] for x in self.balance] # 根据超参数设置的各个部分损失的系数获取最终的损失 lbox *= self.hyp['box'] lobj *= self.hyp['obj'] lcls *= self.hyp['cls'] bs = tobj.shape[0] # batch size return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach() ''' build_targets函数用于获得在训练时计算loss函数所需要的目标框,即被认为是正样本 与yolov3/v4的不同:yolov5支持跨网格预测 对于任何一个bbox,三个输出预测特征层都可能有先验框anchors匹配 该函数输出的正样本框可能比传入的targets(GT框)数目多 具体处理过程: (1)对于任何一层计算当前bbox和当前层anchor的匹配程度,不采用iou,而是shape比例;如果anchor和bbox的宽高比差距大于4,则不认为匹配,此时忽略相应的bbox,即当作背景; (2)然后对bbox计算落在的网格所有anchors都计算loss(并不是直接和GT框比较计算loss) 注意此时落在网格不再是一个,而是附近多个,这样就增加了正样本数,可能u才能在有些bbox在三个尺度都预测的情况; 另外,yolov5也没有conf分支忽略阈值(ignore_thresh)的操作,而yolov3/v4有 ''' def build_targets(self, p, targets): # p: 网络输出, targets:GT框, model:模型 # Build targets for compute_loss(), input targets(image,class,x,y,w,h) na, nt = self.na, targets.shape[0] # number of anchors, targets anchor数量和标签框的数量 tcls, tbox, indices, anch = [], [], [], [] # ai,shape = (na, nt)生成anchor索引 # anchor索引,用于表示当前bbox和当前层的那个anchor匹配 gain = torch.ones(7, device=self.device) # normalized to gridspace gain ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices 先repeat targets和当前层anchor个数一样,相当于每个bbox变成了三个,然后和3个anchor单独匹配 g = 0.5 # bias 设置网格中心偏移量 off = torch.tensor( [ [0, 0], # 当前网格 [1, 0], # 右边网格 [0, 1], # 下边网格 [-1, 0], # 左边网格 [0, -1], # j,k,l,m # 上边网格 # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm ], device=self.device).float() * g # offsets 找出当前网格临近的4个网格 # 对每个检测层进行处理 for i in range(self.nl): # 三个尺度的预测特征图输出分支 self.nl=3 anchors = self.anchors[i]# 当前分支的anchor大小 gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain 当前特征层大小 # Match targets to anchors t = targets * gain # shape(3,n,7) 将标签框的xywh从基于0~1映射到基于特征图;targets的xywh本省是归一化尺度,故需要变成特征图尺度 #对每个输出层单独匹配;首先将targets变成anchor尺度,方便计算; # 然后将target wh shape和anchor的wh计算比例,如果比例过大,则说明匹配度不高,将该bbox过滤,在当前层认为是背景层 if nt: # Matches ''' 预测的wh与anchor的wh做匹配,筛选掉比值大于hyp['anchor_t']的,从而更好的回归。 作者采用新的wh回归方式 与拿来yolov3/v4为anchors[i] * exp(wh) 将标签框与anchor的备注控制在0~4之间;hyp.scratch.yaml中的超参数anchor_t=4, 用于判定anchors与标签框默契度; ''' # 计算当前target的wh和anchor的wh比例值 # 如果最大比例大于预设值model.hyp['anchor_t']=4,则当前target和anchor匹配度不高,不强制回归,而把target丢弃 # 计算比值ratio r = t[..., 4:6] / anchors[:, None] # wh ratio 不考虑xy坐标 j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare 筛选满足 1/hyp['anchor_t'] < targets_wh/anchor_wh < hyp['anchor_t']的框; # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) # 筛选过后的t.shape = (M, 7), M为筛选过后的数量 t = t[j] # filter 注意过滤规则没有考虑xy, 也就是当前bbox的wh是和所有anchoe计算的 # Offsets gxy = t[:, 2:4] # grid xy label的中心点坐标 gxi = gain[[2, 3]] - gxy # inverse 得到中心点相对于当前特征图的坐标 ''' 把相对于各个网格左上角x<0.5,y<0.5和相对于右下角的x<0.5,y<0.5的框提取出来,也就是j,k,l,m; 在选取gij(标签分配给的网格)的时候对这四个部分的框都做一个偏移(减去上面的offsets), 也就是下面的gij=(gxy - offsets).long()操作; 再将这四个部分的框与原始的gxy拼接在一起,总共就是五个部分; yolov3/v4仅仅采用当前网格的anchor进行回归;yolov4也有解决网格跑偏的措施,即通过对sigmoid限制输出; yolov5中心点回归从yolov3/v4的0~1的范围变成-0.5~1.5的范围; 中心点回归的公式变为:xy.sigmoid() * 2. - 0.5 + cx (其中对原始中心点网格坐标扩展两个邻居像素) ''' # 对于筛选后的bbox,计算其落在哪个网格内,同时找出邻近的网格,将这些网格都认为是负责预测该bbox的网格 # 浮点数取模的数学定义:对于两个浮点数a和b,a % b = a - n * b, 其中n为不能超过a / b 的最大整数 j, k = ((gxy % 1 < g) & (gxy > 1)).T l, m = ((gxi % 1 < g) & (gxi > 1)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] # 预设offset是5 offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] # 选择出最近的3个 else: t = targets[0] offsets = 0 # Define ''' 对每个bbox找出对应的正样本anchor,其中包括b表示当前bbox属于batch内部的第几张图片,a表示当前bbox和当前层的第几个anchor匹配上, gi,gj是对应的负责预测该bbox的网格坐标, gxy是不考虑offset或者说yolov3/v4里面设定的该bbox的负责预测网格中心点坐标xy, gwh是对应的bbox wh, c是该bbox类别 ''' bc, gxy, gwh, a = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors 中心点回归标签和宽高回归标签 a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class gij = (gxy - offsets).long() # 当前label落在哪个网格上 gi, gj = gij.T # grid indices # Append indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices 添加索引,方便计算损失的时取出对应位置的输出 tbox.append(torch.cat((gxy - gij, gwh), 1)) # box 坐标值 anch.append(anchors[a]) # anchors 尺寸 tcls.append(c) # class return tcls, tbox, indices, anch