2 İşlemeler f9c7009403 ... 5bd461392e

Yazar SHA1 Mesaj Tarih
  zbc 5bd461392e first commit 3 hafta önce
  zbc f9c7009403 first commit 3 hafta önce
1 değiştirilmiş dosya ile 40 ekleme ve 14 silme
  1. 40 14
      readme.md

+ 40 - 14
readme.md

@@ -1,20 +1,46 @@
-# 注:新数据应先放入下面路径的total_data中(total_data需新建,在本地导入数据放入;项目名称根据具体项目新建)
+# Object Detection Model Training and Deployment
 
-code and data location
-url:192.168.20.250
-directory:/data/object_detection
+This project involves training object detection models using the YOLOv5 framework, exporting the trained model from `.pt` format to `.pb` format, and testing the performance of the model. The new data should be imported to the appropriate directory as described below.
 
-训练模型执行步骤
-1、./object_detection.sh /data2/object_detection/data/image/项目名称/
+## Project Steps
 
-2、训练结束,保存.pt格式:
+### 1. Data Preparation
+- Create a new folder `total_data` under the project directory and place the newly imported data there.
+- **Code and Data Location**:
+  - **Server URL**: `192.168.20.250`
+  - **Directory**: `/data/object_detection`
 
-3、.pt格式模型导出为.pb格式模型
-获取pt文件路径:cat export.sh  
-进入yolov5文件夹 (/data/object_detection/code/yolov5/)后运行 
-python export.py --weights  ./runs/train/helmet_fall_phone/weights/best.pt --include pb #修改项目名称
+### 2. Model Training
+- Run the following script to train the model, where `<project_name>` is the name of the newly created project:
+    ```bash
+    ./object_detection.sh /data2/object_detection/data/image/<project_name>/
+    ```
 
-转换为.pb格式,并保存
+### 3. Save the Model
+- Once training is complete, the model will be saved in `.pt` format.
+
+### 4. Export Model to `.pb` Format
+- To export the `.pt` model to `.pb` format, first find the `.pt` file path by running:
+    ```bash
+    cat export.sh
+    ```
+- Navigate to the YOLOv5 directory:
+    ```bash
+    cd /data/object_detection/code/yolov5/
+    ```
+- Run the export script to convert the `.pt` model to `.pb` format:
+    ```bash
+    python export.py --weights ./runs/train/helmet_fall_phone/weights/best.pt --include pb
+    ```
+  - *Note*: Change `helmet_fall_phone` to the correct project name before running the script.
+
+### 5. Model Testing
+- To test the model, run the following command:
+    ```bash
+    python detect.py --weights runs/train/safebelt_data/weights/best.pt --source /data2/object_detection/code/yolov5/safebelt_test --data /data2/object_detection/data/image/safebelt_data/yolo/safebelt_data.yaml --device 0
+    ```
+  - *Note*: Adjust the `--weights`, `--source`, and `--data` parameters to the correct project paths.
+
+## Contact
+For any inquiries or issues, please contact the development team.
 
-4、测试:
-python detect.py --weights runs/train/safebelt_data/weights/best.pt --source /data2/object_detection/code/yolov5/safebelt_test --data /data2/object_detection/data/image/safebelt_data/yolo/safebelt_data.yaml --device 0