|
@@ -0,0 +1,842 @@
|
|
|
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
|
|
+"""
|
|
|
+Common modules
|
|
|
+"""
|
|
|
+
|
|
|
+import json
|
|
|
+import math
|
|
|
+import platform
|
|
|
+import warnings
|
|
|
+from collections import OrderedDict, namedtuple
|
|
|
+from copy import copy
|
|
|
+from pathlib import Path
|
|
|
+
|
|
|
+import cv2
|
|
|
+import numpy as np
|
|
|
+import pandas as pd
|
|
|
+import requests
|
|
|
+import torch
|
|
|
+import torch.nn as nn
|
|
|
+import yaml
|
|
|
+from PIL import Image
|
|
|
+from torch.cuda import amp
|
|
|
+
|
|
|
+from utils.datasets import exif_transpose, letterbox
|
|
|
+from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path,
|
|
|
+ make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
|
|
|
+from utils.plots import Annotator, colors, save_one_box
|
|
|
+from utils.torch_utils import copy_attr, time_sync
|
|
|
+
|
|
|
+# 为same卷积或same池化自动扩充
|
|
|
+def autopad(k, p=None): # kernel, padding
|
|
|
+ """
|
|
|
+ 用于Conv函数和Classify函数,根据卷积核大小k自动计算卷积核和padding数
|
|
|
+ v5中只有两种卷积:
|
|
|
+ 1.下采样卷积:conv3*3 s=2 p=k//2=1
|
|
|
+ 2.feature size不变的卷积:conv1*1 s=1 p=k//2=1
|
|
|
+ :param k: 卷积核的kernel_size
|
|
|
+ :type k:
|
|
|
+ :param p:自动计算的pad值
|
|
|
+ :type p:
|
|
|
+ :return:
|
|
|
+ :rtype:
|
|
|
+ """
|
|
|
+ # Pad to 'same'
|
|
|
+ if p is None:
|
|
|
+ p = k // 2 if isinstance(k, int) else (x // 2 for x in k) # auto-pad
|
|
|
+ return p
|
|
|
+
|
|
|
+
|
|
|
+class Conv(nn.Module):
|
|
|
+ # Standard convolution 标准卷积:conv+BN+SiLU
|
|
|
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
|
|
+ """
|
|
|
+ 在Focus、Bottleneck、BottleneckCSP、C3、SPP、DWConv、TransformerBloc等模块中调用的基础组件
|
|
|
+ :param c1:输入的channel值
|
|
|
+ :type c1:
|
|
|
+ :param c2:输出的channel值
|
|
|
+ :type c2:
|
|
|
+ :param k:卷积的kernel_size
|
|
|
+ :type k:
|
|
|
+ :param s:卷积的stride
|
|
|
+ :type s:
|
|
|
+ :param p:卷积的padding数,可以通过autopad自行计算padding数
|
|
|
+ :type p:
|
|
|
+ :param g:卷积的groups数 一般等于1为普通卷积,大于1就是深度可分离卷积
|
|
|
+ :type g:
|
|
|
+ :param act:激活函数类型 True就是SiLU
|
|
|
+ :type act:
|
|
|
+ """
|
|
|
+ super().__init__()
|
|
|
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
|
|
+ self.bn = nn.BatchNorm2d(c2)
|
|
|
+ self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
|
|
+
|
|
|
+ def forward(self, x): # 网络的执行顺序是根据 forward 函数决定的
|
|
|
+ return self.act(self.bn(self.conv(x)))
|
|
|
+
|
|
|
+ def forward_fuse(self, x):
|
|
|
+ """
|
|
|
+ 用于Model类的fuse函数
|
|
|
+ 相较于forward函数去掉了BN层,加速推理,一般用于测试/验证阶段
|
|
|
+ :param x:
|
|
|
+ :type x:
|
|
|
+ :return:
|
|
|
+ :rtype:
|
|
|
+ """
|
|
|
+ return self.act(self.conv(x))
|
|
|
+
|
|
|
+
|
|
|
+class DWConv(Conv):
|
|
|
+ # Depth-wise convolution class
|
|
|
+ def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
|
|
+ super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
|
|
+
|
|
|
+
|
|
|
+class TransformerLayer(nn.Module):
|
|
|
+ # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
|
|
|
+ def __init__(self, c, num_heads):
|
|
|
+ super().__init__()
|
|
|
+ self.q = nn.Linear(c, c, bias=False)
|
|
|
+ self.k = nn.Linear(c, c, bias=False)
|
|
|
+ self.v = nn.Linear(c, c, bias=False)
|
|
|
+ self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
|
|
+ self.fc1 = nn.Linear(c, c, bias=False)
|
|
|
+ self.fc2 = nn.Linear(c, c, bias=False)
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
|
|
+ x = self.fc2(self.fc1(x)) + x
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+class TransformerBlock(nn.Module):
|
|
|
+ # Vision Transformer https://arxiv.org/abs/2010.11929
|
|
|
+ def __init__(self, c1, c2, num_heads, num_layers):
|
|
|
+ super().__init__()
|
|
|
+ self.conv = None
|
|
|
+ if c1 != c2:
|
|
|
+ self.conv = Conv(c1, c2)
|
|
|
+ self.linear = nn.Linear(c2, c2) # learnable position embedding
|
|
|
+ self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
|
|
+ self.c2 = c2
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ if self.conv is not None:
|
|
|
+ x = self.conv(x)
|
|
|
+ b, _, w, h = x.shape
|
|
|
+ p = x.flatten(2).permute(2, 0, 1)
|
|
|
+ return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
|
|
+
|
|
|
+
|
|
|
+class Bottleneck(nn.Module):
|
|
|
+ # Standard bottleneck
|
|
|
+ """
|
|
|
+ 由1*1conv、3*3conv、残差块组成
|
|
|
+ """
|
|
|
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
|
|
+ """
|
|
|
+ 在BottleneckCSP、C3、parse_model中调用
|
|
|
+ 组件分为两种情况,当shortcut为True时,bottleneck需要在经过1*1卷积和3*3卷积后在经过shortcut
|
|
|
+ 当shortcut为False时,bottleneck只需要经过1*1卷积和3*3卷积即可
|
|
|
+ :param c1:输入channel
|
|
|
+ :type c1:
|
|
|
+ :param c2:输出channel
|
|
|
+ :type c2:
|
|
|
+ :param shortcut:是否进行shortcut 默认为True
|
|
|
+ :type shortcut:
|
|
|
+ :param g: 卷积的groups数 等于1普通卷积 大于1深度可分离卷积
|
|
|
+ :type g:
|
|
|
+ :param e:膨胀系数
|
|
|
+ :type e:
|
|
|
+ """
|
|
|
+ super().__init__()
|
|
|
+ c_ = int(c2 * e) # hidden channels 中间层的channel数
|
|
|
+ self.cv1 = Conv(c1, c_, 1, 1) # 第一层卷积输出的channel数为c_
|
|
|
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)# 第二层卷积输入的channel数为c_
|
|
|
+ self.add = shortcut and c1 == c2
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+class BottleneckCSP(nn.Module):
|
|
|
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
|
|
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
|
|
+ """
|
|
|
+ 该组件由bottleneck模块和CSP模块组成,此模块与C3模块等效。
|
|
|
+ :param c1:输入channel
|
|
|
+ :type c1:
|
|
|
+ :param c2:输出channel
|
|
|
+ :type c2:
|
|
|
+ :param n:有n个bottleneck
|
|
|
+ :type n:
|
|
|
+ :param shortcut:bottleneck中是shortcut,默认为True
|
|
|
+ :type shortcut:
|
|
|
+ :param g: bottleneck中的groups 等于1,普通卷积 大于1,深度可分离卷积
|
|
|
+ :type g:
|
|
|
+ :param e:bottleneck中的膨胀系数
|
|
|
+ :type e:
|
|
|
+ """
|
|
|
+ super().__init__()
|
|
|
+ c_ = int(c2 * e) # hidden channels
|
|
|
+ self.cv1 = Conv(c1, c_, 1, 1) #Conv+BN+SiLU
|
|
|
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
|
|
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
|
|
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
|
|
|
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
|
|
+ self.act = nn.SiLU()
|
|
|
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) #叠加n次bottleneck
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ y1 = self.cv3(self.m(self.cv1(x)))
|
|
|
+ y2 = self.cv2(x)
|
|
|
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
|
|
+
|
|
|
+
|
|
|
+class C3(nn.Module):
|
|
|
+ # CSP Bottleneck with 3 convolutions
|
|
|
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
|
|
+ """
|
|
|
+ 简化版的bottleneckCSP模块,除了bottleneck部分整个结构只有3个卷积,可以减少参数
|
|
|
+ :param c1: 输入channel
|
|
|
+ :type c1:
|
|
|
+ :param c2: 输出channel
|
|
|
+ :type c2:
|
|
|
+ :param n: 有n个bottleneck
|
|
|
+ :type n:
|
|
|
+ :param shortcut: bottleneck中是否有shortcut,默认为True
|
|
|
+ :type shortcut:
|
|
|
+ :param g: bottleneck中的groups 等于1,普通卷积 大于1,深度可分离卷积
|
|
|
+ :type g:
|
|
|
+ :param e: bottleneck中的膨胀系数
|
|
|
+ :type e:
|
|
|
+ """
|
|
|
+ super().__init__()
|
|
|
+ c_ = int(c2 * e) # hidden channels
|
|
|
+ self.cv1 = Conv(c1, c_, 1, 1)
|
|
|
+ self.cv2 = Conv(c1, c_, 1, 1)
|
|
|
+ self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
|
|
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
|
|
+ # self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
|
|
+
|
|
|
+
|
|
|
+class C3TR(C3):
|
|
|
+ # C3 module with TransformerBlock()
|
|
|
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
|
+ super().__init__(c1, c2, n, shortcut, g, e)
|
|
|
+ c_ = int(c2 * e)
|
|
|
+ self.m = TransformerBlock(c_, c_, 4, n)
|
|
|
+
|
|
|
+
|
|
|
+class C3SPP(C3):
|
|
|
+ # C3 module with SPP()
|
|
|
+ def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
|
|
|
+ super().__init__(c1, c2, n, shortcut, g, e)
|
|
|
+ c_ = int(c2 * e)
|
|
|
+ self.m = SPP(c_, c_, k)
|
|
|
+
|
|
|
+
|
|
|
+class C3Ghost(C3):
|
|
|
+ # C3 module with GhostBottleneck()
|
|
|
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
|
|
+ super().__init__(c1, c2, n, shortcut, g, e)
|
|
|
+ c_ = int(c2 * e) # hidden channels
|
|
|
+ self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
|
|
+
|
|
|
+
|
|
|
+class SPP(nn.Module):
|
|
|
+ # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
|
|
|
+ def __init__(self, c1, c2, k=(5, 9, 13)):
|
|
|
+ """
|
|
|
+ 空间金字塔池化
|
|
|
+ :param c1: 输入channel
|
|
|
+ :type c1:
|
|
|
+ :param c2: 输出channel
|
|
|
+ :type c2:
|
|
|
+ :param k: 保存着三个maxpool卷积的kernel_size。默认是(5, 9, 13)
|
|
|
+ :type k:
|
|
|
+ """
|
|
|
+ super().__init__()
|
|
|
+ c_ = c1 // 2 # hidden channels
|
|
|
+ self.cv1 = Conv(c1, c_, 1, 1) # 第一层卷积
|
|
|
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) # 最后一层卷积
|
|
|
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) # 中间的maxpool层
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ x = self.cv1(x)
|
|
|
+ with warnings.catch_warnings():
|
|
|
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
|
|
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
|
|
+
|
|
|
+
|
|
|
+class SPPF(nn.Module):
|
|
|
+ # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
|
|
|
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
|
|
+ """
|
|
|
+ SPP的升级改进版,将5*5,9*9,13*13三个amxpool并行输出的结果改成了3个5*5的maxpool串行输出的结果。结果是提升了计算速度
|
|
|
+ :param c1: 输入channel
|
|
|
+ :type c1:
|
|
|
+ :param c2: 输出channel
|
|
|
+ :type c2:
|
|
|
+ :param k: 卷积的kernel_size
|
|
|
+ :type k:
|
|
|
+ """
|
|
|
+ super().__init__()
|
|
|
+ c_ = c1 // 2 # hidden channels
|
|
|
+ self.cv1 = Conv(c1, c_, 1, 1)
|
|
|
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
|
|
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ x = self.cv1(x)
|
|
|
+ with warnings.catch_warnings():
|
|
|
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
|
|
+ y1 = self.m(x)
|
|
|
+ y2 = self.m(y1)
|
|
|
+ return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
|
|
+
|
|
|
+
|
|
|
+class Focus(nn.Module): # Focus:把宽度w和高度h的信息整合到c空间中。
|
|
|
+ """
|
|
|
+ Focus组件是为了减少计算量,提升速度。并不能增加网络的精度。
|
|
|
+
|
|
|
+ 从高分辨率图片中,周期性的抽出像素点重构到低分辨率图像中,将图像相邻的四个位置进行堆叠,聚焦wh维度信息到c通道空间,提高每个点的感受野,并减少原始信息的丢失。
|
|
|
+ 该组件在减少计算量,提升速度的前提下减少原始信息的丢失。
|
|
|
+ """
|
|
|
+ # Focus wh information into c-space
|
|
|
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
|
|
+ """
|
|
|
+
|
|
|
+ :param c1: 输入的channel数
|
|
|
+ :type c1:
|
|
|
+ :param c2: Focus输出的channel数
|
|
|
+ :type c2:
|
|
|
+ :param k: 卷积的kernel_size
|
|
|
+ :type k:
|
|
|
+ :param s: 卷积的stride
|
|
|
+ :type s:
|
|
|
+ :param p: 卷积的padding
|
|
|
+ :type p:
|
|
|
+ :param g: 卷积的groups 等于1为普通卷积 大于1为深度可分离卷积
|
|
|
+ :type g:
|
|
|
+ :param act:激活函数类型 True:SiLU/Swish False:不使用激活函数
|
|
|
+ :type act:
|
|
|
+ """
|
|
|
+ super().__init__()
|
|
|
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
|
|
+ # self.contract = Contract(gain=2)
|
|
|
+
|
|
|
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
|
|
+ return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
|
|
+ # return self.conv(self.contract(x))
|
|
|
+
|
|
|
+
|
|
|
+class GhostConv(nn.Module):
|
|
|
+ # Ghost Convolution https://github.com/huawei-noah/ghostnet
|
|
|
+ def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
|
|
+ super().__init__()
|
|
|
+ c_ = c2 // 2 # hidden channels
|
|
|
+ self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
|
|
+ self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ y = self.cv1(x)
|
|
|
+ return torch.cat((y, self.cv2(y)), 1)
|
|
|
+
|
|
|
+
|
|
|
+class GhostBottleneck(nn.Module):
|
|
|
+ # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
|
|
+ def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
|
|
+ super().__init__()
|
|
|
+ c_ = c2 // 2
|
|
|
+ self.conv = nn.Sequential(
|
|
|
+ GhostConv(c1, c_, 1, 1), # pw
|
|
|
+ DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
|
|
+ GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
|
|
+ self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
|
|
|
+ act=False)) if s == 2 else nn.Identity()
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ return self.conv(x) + self.shortcut(x)
|
|
|
+
|
|
|
+
|
|
|
+class Contract(nn.Module):
|
|
|
+ # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
|
|
+ def __init__(self, gain=2):
|
|
|
+ """
|
|
|
+ Focus模块的辅助函数,目的是改变输入特征的shape w和h维度的数据减半后将channel通道数提升4倍
|
|
|
+ :param gain:
|
|
|
+ :type gain:
|
|
|
+ """
|
|
|
+ super().__init__()
|
|
|
+ self.gain = gain
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
|
|
|
+ s = self.gain
|
|
|
+ x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
|
|
|
+ x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
|
|
+ return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
|
|
|
+
|
|
|
+
|
|
|
+class Expand(nn.Module):
|
|
|
+ # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
|
|
+ def __init__(self, gain=2):
|
|
|
+ """
|
|
|
+ Contract函数的还原函数,目的是将channel维度(缩小4倍)的数据扩展到W和H维度(扩大两倍)
|
|
|
+ :param gain:
|
|
|
+ :type gain:
|
|
|
+ """
|
|
|
+ super().__init__()
|
|
|
+ self.gain = gain
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
|
|
+ s = self.gain
|
|
|
+ x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
|
|
|
+ x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
|
|
+ return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
|
|
|
+
|
|
|
+
|
|
|
+class Concat(nn.Module):
|
|
|
+ # Concatenate a list of tensors along dimension
|
|
|
+ def __init__(self, dimension=1):
|
|
|
+ """
|
|
|
+ 按指定维度进行拼接
|
|
|
+ :param dimension:维度
|
|
|
+ :type dimension:
|
|
|
+ """
|
|
|
+ super().__init__()
|
|
|
+ self.d = dimension
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ return torch.cat(x, self.d)
|
|
|
+
|
|
|
+
|
|
|
+class DetectMultiBackend(nn.Module): # YOLOv5 多类型模型推理
|
|
|
+ # YOLOv5 MultiBackend class for python inference on various backends
|
|
|
+ def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False):
|
|
|
+ # Usage:
|
|
|
+ # PyTorch: weights = *.pt
|
|
|
+ # TorchScript: *.torchscript
|
|
|
+ # ONNX Runtime: *.onnx
|
|
|
+ # ONNX OpenCV DNN: *.onnx with --dnn
|
|
|
+ # OpenVINO: *.xml
|
|
|
+ # CoreML: *.mlmodel
|
|
|
+ # TensorRT: *.engine
|
|
|
+ # TensorFlow SavedModel: *_saved_model
|
|
|
+ # TensorFlow GraphDef: *.pb
|
|
|
+ # TensorFlow Lite: *.tflite
|
|
|
+ # TensorFlow Edge TPU: *_edgetpu.tflite
|
|
|
+ from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
|
|
|
+
|
|
|
+ super().__init__()
|
|
|
+ w = str(weights[0] if isinstance(weights, list) else weights) # 获取 weights的名称
|
|
|
+ pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend 返回模型的类型,如果模型属于该类则返回True
|
|
|
+ stride, names = 32, [f'class{i}' for i in range(1000)] # assign defaults 自定义步长为32,类别为1000种
|
|
|
+ w = attempt_download(w) # download if not local 下载权重文件,如果文件不存在
|
|
|
+ fp16 &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16
|
|
|
+ if data: # data.yaml path (optional) 如果yaml文件存在则读取文件种的class_name
|
|
|
+ with open(data, errors='ignore') as f:
|
|
|
+ names = yaml.safe_load(f)['names'] # class names
|
|
|
+
|
|
|
+ if pt: # PyTorch
|
|
|
+ model = attempt_load(weights if isinstance(weights, list) else w, map_location=device) # 加载权重文件
|
|
|
+ stride = max(int(model.stride.max()), 32) # model stride #获取模型的下采样倍数(最小32倍)
|
|
|
+ names = model.module.names if hasattr(model, 'module') else model.names # get class names 获取分类名称
|
|
|
+ model.half() if fp16 else model.float() # 全精度/半精度
|
|
|
+ self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
|
|
+ elif jit: # TorchScript
|
|
|
+ LOGGER.info(f'Loading {w} for TorchScript inference...')
|
|
|
+ extra_files = {'config.txt': ''} # model metadata
|
|
|
+ model = torch.jit.load(w, _extra_files=extra_files)
|
|
|
+ model.half() if fp16 else model.float()
|
|
|
+ if extra_files['config.txt']:
|
|
|
+ d = json.loads(extra_files['config.txt']) # extra_files dict
|
|
|
+ stride, names = int(d['stride']), d['names']
|
|
|
+ elif dnn: # ONNX OpenCV DNN
|
|
|
+ LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
|
|
|
+ check_requirements(('opencv-python>=4.5.4',))
|
|
|
+ net = cv2.dnn.readNetFromONNX(w)
|
|
|
+ elif onnx: # ONNX Runtime
|
|
|
+ LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
|
|
|
+ cuda = torch.cuda.is_available()
|
|
|
+ check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
|
|
|
+ import onnxruntime
|
|
|
+ providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
|
|
+ session = onnxruntime.InferenceSession(w, providers=providers)
|
|
|
+ meta = session.get_modelmeta().custom_metadata_map # metadata
|
|
|
+ if 'stride' in meta:
|
|
|
+ stride, names = int(meta['stride']), eval(meta['names'])
|
|
|
+ elif xml: # OpenVINO
|
|
|
+ LOGGER.info(f'Loading {w} for OpenVINO inference...')
|
|
|
+ check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
|
|
+ import openvino.inference_engine as ie
|
|
|
+ core = ie.IECore()
|
|
|
+ if not Path(w).is_file(): # if not *.xml
|
|
|
+ w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
|
|
|
+ network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths
|
|
|
+ executable_network = core.load_network(network, device_name='CPU', num_requests=1)
|
|
|
+ elif engine: # TensorRT
|
|
|
+ LOGGER.info(f'Loading {w} for TensorRT inference...')
|
|
|
+ import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
|
|
|
+ check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
|
|
+ Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
|
|
+ logger = trt.Logger(trt.Logger.INFO)
|
|
|
+ with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
|
|
+ model = runtime.deserialize_cuda_engine(f.read())
|
|
|
+ bindings = OrderedDict()
|
|
|
+ fp16 = False # default updated below
|
|
|
+ for index in range(model.num_bindings):
|
|
|
+ name = model.get_binding_name(index)
|
|
|
+ dtype = trt.nptype(model.get_binding_dtype(index))
|
|
|
+ shape = tuple(model.get_binding_shape(index))
|
|
|
+ data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
|
|
|
+ bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
|
|
|
+ if model.binding_is_input(index) and dtype == np.float16:
|
|
|
+ fp16 = True
|
|
|
+ binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
|
|
+ context = model.create_execution_context()
|
|
|
+ batch_size = bindings['images'].shape[0]
|
|
|
+ elif coreml: # CoreML
|
|
|
+ LOGGER.info(f'Loading {w} for CoreML inference...')
|
|
|
+ import coremltools as ct
|
|
|
+ model = ct.models.MLModel(w)
|
|
|
+ else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
|
|
+ if saved_model: # SavedModel
|
|
|
+ LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
|
|
|
+ import tensorflow as tf
|
|
|
+ keras = False # assume TF1 saved_model
|
|
|
+ model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
|
|
+ elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
|
|
+ LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
|
|
|
+ import tensorflow as tf
|
|
|
+
|
|
|
+ def wrap_frozen_graph(gd, inputs, outputs):
|
|
|
+ x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
|
|
+ ge = x.graph.as_graph_element
|
|
|
+ return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
|
|
+
|
|
|
+ gd = tf.Graph().as_graph_def() # graph_def
|
|
|
+ with open(w, 'rb') as f:
|
|
|
+ gd.ParseFromString(f.read())
|
|
|
+ frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
|
|
|
+ elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
|
|
+ try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
|
|
+ from tflite_runtime.interpreter import Interpreter, load_delegate
|
|
|
+ except ImportError:
|
|
|
+ import tensorflow as tf
|
|
|
+ Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
|
|
|
+ if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime
|
|
|
+ LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
|
|
|
+ delegate = {
|
|
|
+ 'Linux': 'libedgetpu.so.1',
|
|
|
+ 'Darwin': 'libedgetpu.1.dylib',
|
|
|
+ 'Windows': 'edgetpu.dll'}[platform.system()]
|
|
|
+ interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
|
|
+ else: # Lite
|
|
|
+ LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
|
|
|
+ interpreter = Interpreter(model_path=w) # load TFLite model
|
|
|
+ interpreter.allocate_tensors() # allocate
|
|
|
+ input_details = interpreter.get_input_details() # inputs
|
|
|
+ output_details = interpreter.get_output_details() # outputs
|
|
|
+ elif tfjs:
|
|
|
+ raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
|
|
|
+ self.__dict__.update(locals()) # assign all variables to self
|
|
|
+
|
|
|
+ def forward(self, im, augment=False, visualize=False, val=False):
|
|
|
+ # YOLOv5 MultiBackend inference YOLOv5支持不同模型的推理
|
|
|
+ b, ch, h, w = im.shape # batch, channel, height, width
|
|
|
+ if self.pt: # PyTorch
|
|
|
+ y = self.model(im, augment=augment, visualize=visualize)[0]
|
|
|
+ elif self.jit: # TorchScript
|
|
|
+ y = self.model(im)[0]
|
|
|
+ elif self.dnn: # ONNX OpenCV DNN
|
|
|
+ im = im.cpu().numpy() # torch to numpy
|
|
|
+ self.net.setInput(im)
|
|
|
+ y = self.net.forward()
|
|
|
+ elif self.onnx: # ONNX Runtime
|
|
|
+ im = im.cpu().numpy() # torch to numpy
|
|
|
+ y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
|
|
|
+ elif self.xml: # OpenVINO
|
|
|
+ im = im.cpu().numpy() # FP32
|
|
|
+ desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW') # Tensor Description
|
|
|
+ request = self.executable_network.requests[0] # inference request
|
|
|
+ request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im)) # name=next(iter(request.input_blobs))
|
|
|
+ request.infer()
|
|
|
+ y = request.output_blobs['output'].buffer # name=next(iter(request.output_blobs))
|
|
|
+ elif self.engine: # TensorRT
|
|
|
+ assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
|
|
|
+ self.binding_addrs['images'] = int(im.data_ptr())
|
|
|
+ self.context.execute_v2(list(self.binding_addrs.values()))
|
|
|
+ y = self.bindings['output'].data
|
|
|
+ elif self.coreml: # CoreML
|
|
|
+ im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
|
|
|
+ im = Image.fromarray((im[0] * 255).astype('uint8'))
|
|
|
+ # im = im.resize((192, 320), Image.ANTIALIAS)
|
|
|
+ y = self.model.predict({'image': im}) # coordinates are xywh normalized
|
|
|
+ if 'confidence' in y:
|
|
|
+ box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
|
|
+ conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
|
|
+ y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
|
|
+ else:
|
|
|
+ k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
|
|
|
+ y = y[k] # output
|
|
|
+ else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
|
|
+ im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
|
|
|
+ if self.saved_model: # SavedModel
|
|
|
+ y = (self.model(im, training=False) if self.keras else self.model(im)).numpy()
|
|
|
+ elif self.pb: # GraphDef
|
|
|
+ y = self.frozen_func(x=self.tf.constant(im)).numpy()
|
|
|
+ else: # Lite or Edge TPU
|
|
|
+ input, output = self.input_details[0], self.output_details[0]
|
|
|
+ int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
|
|
|
+ if int8:
|
|
|
+ scale, zero_point = input['quantization']
|
|
|
+ im = (im / scale + zero_point).astype(np.uint8) # de-scale
|
|
|
+ self.interpreter.set_tensor(input['index'], im)
|
|
|
+ self.interpreter.invoke()
|
|
|
+ y = self.interpreter.get_tensor(output['index'])
|
|
|
+ if int8:
|
|
|
+ scale, zero_point = output['quantization']
|
|
|
+ y = (y.astype(np.float32) - zero_point) * scale # re-scale
|
|
|
+ y[..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
|
|
+
|
|
|
+ if isinstance(y, np.ndarray):
|
|
|
+ y = torch.tensor(y, device=self.device)
|
|
|
+ return (y, []) if val else y
|
|
|
+
|
|
|
+ def warmup(self, imgsz=(1, 3, 640, 640)): # 模型预热推理
|
|
|
+ # Warmup model by running inference once
|
|
|
+ if any((self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb)): # warmup types 检查模型类型
|
|
|
+ if self.device.type != 'cpu': # only warmup GPU models
|
|
|
+ im = torch.zeros(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input 初始化全零矩阵作为模型的输入
|
|
|
+ for _ in range(2 if self.jit else 1): #
|
|
|
+ self.forward(im) # warmup
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def model_type(p='path/to/model.pt'): # 根据模型的路径信息返回模型的类型
|
|
|
+ # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
|
|
+ from export import export_formats
|
|
|
+ suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes 获取YOLOv5模型支持格式
|
|
|
+ check_suffix(p, suffixes) # checks 检查模型后缀
|
|
|
+ p = Path(p).name # eliminate trailing separators 去除目录信息
|
|
|
+ pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
|
|
|
+ xml |= xml2 # *_openvino_model or *.xml
|
|
|
+ tflite &= not edgetpu # *.tflite
|
|
|
+ return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
|
|
|
+
|
|
|
+
|
|
|
+class AutoShape(nn.Module): #自动调整shape
|
|
|
+ # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
|
|
+ conf = 0.25 # NMS confidence threshold
|
|
|
+ iou = 0.45 # NMS IoU threshold
|
|
|
+ agnostic = False # NMS class-agnostic
|
|
|
+ multi_label = False # NMS multiple labels per box
|
|
|
+ classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
|
|
+ max_det = 1000 # maximum number of detections per image
|
|
|
+ amp = False # Automatic Mixed Precision (AMP) inference
|
|
|
+
|
|
|
+ def __init__(self, model):
|
|
|
+ super().__init__()
|
|
|
+ LOGGER.info('Adding AutoShape... ')
|
|
|
+ copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
|
|
|
+ self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
|
|
|
+ self.pt = not self.dmb or model.pt # PyTorch model
|
|
|
+ self.model = model.eval()
|
|
|
+
|
|
|
+ def _apply(self, fn):
|
|
|
+ # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
|
|
+ self = super()._apply(fn)
|
|
|
+ if self.pt:
|
|
|
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
|
|
+ m.stride = fn(m.stride)
|
|
|
+ m.grid = list(map(fn, m.grid))
|
|
|
+ if isinstance(m.anchor_grid, list):
|
|
|
+ m.anchor_grid = list(map(fn, m.anchor_grid))
|
|
|
+ return self
|
|
|
+
|
|
|
+ @torch.no_grad()
|
|
|
+ def forward(self, imgs, size=640, augment=False, profile=False):
|
|
|
+ # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
|
|
|
+ # file: imgs = 'data/images/zidane.jpg' # str or PosixPath
|
|
|
+ # URI: = 'https://ultralytics.com/images/zidane.jpg'
|
|
|
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
|
|
+ # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
|
|
+ # numpy: = np.zeros((640,1280,3)) # HWC
|
|
|
+ # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
|
|
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
|
|
+
|
|
|
+ t = [time_sync()]
|
|
|
+ p = next(self.model.parameters()) if self.pt else torch.zeros(1) # for device and type
|
|
|
+ autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
|
|
+ if isinstance(imgs, torch.Tensor): # torch
|
|
|
+ with amp.autocast(autocast):
|
|
|
+ return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
|
|
+
|
|
|
+ # Pre-process
|
|
|
+ n, imgs = (len(imgs), list(imgs)) if isinstance(imgs, (list, tuple)) else (1, [imgs]) # number, list of images
|
|
|
+ shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
|
|
+ for i, im in enumerate(imgs):
|
|
|
+ f = f'image{i}' # filename
|
|
|
+ if isinstance(im, (str, Path)): # filename or uri
|
|
|
+ im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
|
|
+ im = np.asarray(exif_transpose(im))
|
|
|
+ elif isinstance(im, Image.Image): # PIL Image
|
|
|
+ im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
|
|
|
+ files.append(Path(f).with_suffix('.jpg').name)
|
|
|
+ if im.shape[0] < 5: # image in CHW
|
|
|
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
|
|
+ im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
|
|
|
+ s = im.shape[:2] # HWC
|
|
|
+ shape0.append(s) # image shape
|
|
|
+ g = (size / max(s)) # gain
|
|
|
+ shape1.append([y * g for y in s])
|
|
|
+ imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
|
|
+ shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape
|
|
|
+ x = [letterbox(im, shape1, auto=False)[0] for im in imgs] # pad
|
|
|
+ x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
|
|
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
|
|
+ t.append(time_sync())
|
|
|
+
|
|
|
+ with amp.autocast(autocast):
|
|
|
+ # Inference
|
|
|
+ y = self.model(x, augment, profile) # forward
|
|
|
+ t.append(time_sync())
|
|
|
+
|
|
|
+ # Post-process
|
|
|
+ y = non_max_suppression(y if self.dmb else y[0],
|
|
|
+ self.conf,
|
|
|
+ self.iou,
|
|
|
+ self.classes,
|
|
|
+ self.agnostic,
|
|
|
+ self.multi_label,
|
|
|
+ max_det=self.max_det) # NMS
|
|
|
+ for i in range(n):
|
|
|
+ scale_coords(shape1, y[i][:, :4], shape0[i])
|
|
|
+
|
|
|
+ t.append(time_sync())
|
|
|
+ return Detections(imgs, y, files, t, self.names, x.shape)
|
|
|
+
|
|
|
+
|
|
|
+class Detections:
|
|
|
+ # YOLOv5 detections class for inference results
|
|
|
+ def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
|
|
|
+ super().__init__()
|
|
|
+ d = pred[0].device # device
|
|
|
+ gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations
|
|
|
+ self.imgs = imgs # list of images as numpy arrays
|
|
|
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
|
|
+ self.names = names # class names
|
|
|
+ self.files = files # image filenames
|
|
|
+ self.times = times # profiling times
|
|
|
+ self.xyxy = pred # xyxy pixels
|
|
|
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
|
|
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
|
|
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
|
|
+ self.n = len(self.pred) # number of images (batch size)
|
|
|
+ self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
|
|
|
+ self.s = shape # inference BCHW shape
|
|
|
+
|
|
|
+ def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
|
|
|
+ crops = []
|
|
|
+ for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
|
|
|
+ s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
|
|
+ if pred.shape[0]:
|
|
|
+ for c in pred[:, -1].unique():
|
|
|
+ n = (pred[:, -1] == c).sum() # detections per class
|
|
|
+ s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
|
|
+ if show or save or render or crop:
|
|
|
+ annotator = Annotator(im, example=str(self.names))
|
|
|
+ for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
|
|
+ label = f'{self.names[int(cls)]} {conf:.2f}'
|
|
|
+ if crop:
|
|
|
+ file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
|
|
+ crops.append({
|
|
|
+ 'box': box,
|
|
|
+ 'conf': conf,
|
|
|
+ 'cls': cls,
|
|
|
+ 'label': label,
|
|
|
+ 'im': save_one_box(box, im, file=file, save=save)})
|
|
|
+ else: # all others
|
|
|
+ annotator.box_label(box, label if labels else '', color=colors(cls))
|
|
|
+ im = annotator.im
|
|
|
+ else:
|
|
|
+ s += '(no detections)'
|
|
|
+
|
|
|
+ im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
|
|
+ if pprint:
|
|
|
+ LOGGER.info(s.rstrip(', '))
|
|
|
+ if show:
|
|
|
+ im.show(self.files[i]) # show
|
|
|
+ if save:
|
|
|
+ f = self.files[i]
|
|
|
+ im.save(save_dir / f) # save
|
|
|
+ if i == self.n - 1:
|
|
|
+ LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
|
|
+ if render:
|
|
|
+ self.imgs[i] = np.asarray(im)
|
|
|
+ if crop:
|
|
|
+ if save:
|
|
|
+ LOGGER.info(f'Saved results to {save_dir}\n')
|
|
|
+ return crops
|
|
|
+
|
|
|
+ def print(self):
|
|
|
+ self.display(pprint=True) # print results
|
|
|
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
|
|
|
+ self.t)
|
|
|
+
|
|
|
+ def show(self, labels=True):
|
|
|
+ self.display(show=True, labels=labels) # show results
|
|
|
+
|
|
|
+ def save(self, labels=True, save_dir='runs/detect/exp'):
|
|
|
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
|
|
|
+ self.display(save=True, labels=labels, save_dir=save_dir) # save results
|
|
|
+
|
|
|
+ def crop(self, save=True, save_dir='runs/detect/exp'):
|
|
|
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
|
|
|
+ return self.display(crop=True, save=save, save_dir=save_dir) # crop results
|
|
|
+
|
|
|
+ def render(self, labels=True):
|
|
|
+ self.display(render=True, labels=labels) # render results
|
|
|
+ return self.imgs
|
|
|
+
|
|
|
+ def pandas(self):
|
|
|
+ # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
|
|
+ new = copy(self) # return copy
|
|
|
+ ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
|
|
+ cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
|
|
+ for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
|
|
+ a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
|
|
+ setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
|
|
+ return new
|
|
|
+
|
|
|
+ def tolist(self):
|
|
|
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
|
|
|
+ r = range(self.n) # iterable
|
|
|
+ x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
|
|
+ # for d in x:
|
|
|
+ # for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
|
|
+ # setattr(d, k, getattr(d, k)[0]) # pop out of list
|
|
|
+ return x
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return self.n
|
|
|
+
|
|
|
+
|
|
|
+class Classify(nn.Module):
|
|
|
+ # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
|
|
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
|
|
+ super().__init__()
|
|
|
+ self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
|
|
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
|
|
+ self.flat = nn.Flatten()
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
|
|
+ return self.flat(self.conv(z)) # flatten to x(b,c2)
|